Structural Relations

The mathematical properties of phrase structure trees

Important!

Imporiant!

- Even if you have trouble with the formal definitions, try to understand the INTUTIVE idea behind them. Don't get lost in the details of the formalism.

Structural Relations

Structural relations: the formal relationships between items of a tree

Why should we care? We want to be able to talk about specific relationships in terms of structures.

Structural relations are actually very simple! Don't let the formalism scare you!

Some basic terms

Some basic terms

Some basic terms

Labels: M,N,O,D,E,F,F,G,H,J

Some basic terms

Labels: M,N,O,D,E,F,F,G,H,J
Node: Any point with a label

Some basic terms

Labels: M,N,O,D,E,F,F,G,H,J
Node: Any point with a label

Some basic terms

Labels: M,N,O,D,E,F,F,G,H,J
Node: Any point with a label

Some basic terms

Domination

Domination

Intuitively: this is containment. If a node contains another, then it dominates it:

Domination

Intuitively: this is containment. If a node contains another, then it dominates it:

Domination

Intuitively: this is containment. If a node contains another, then it dominates it:

A dominates B, C, D, E, F, G

D dominates $\mathrm{E}, \mathrm{F}, \mathrm{G}$

Domination

Intuitively: this is containment. If a node contains another, then it dominates it:

A dominates B, C, D, E, F, G

[$\left.{ }_{A} B C\left[{ }_{D} E F G\right]\right]$ contained inside $\left[\begin{array}{l}\text {] }\end{array}\right]$

D dominates $\mathrm{E}, \mathrm{F}, \mathrm{G}$

Domination

Intuitively: this is containment. If a node contains another, then it dominates it:
A dominates B, C, D, E, F, G

[$\left.{ }_{A} B C\left[{ }_{D} \mathrm{EFG}\right]\right]$ contained inside $\left[\begin{array}{c}\text {] }\end{array}\right]$

D dominates $\mathrm{E}, \mathrm{F}, \mathrm{G}$

oandingother way to think of it: "on top of"

Domination

Domination

A slightly more formal definition:
Domination: Node A dominates node B if and only if A is higher up in the tree than B and if you can trace a line from A to B going only downwards.

Immediate Domination

Immediate Domination

Node A immediately dominates node B if there is no intervening node G which is dominated by A, but dominates B. (in other words, A is the first node that dominates B)

Immediate Domination

Node A immediately dominates node B if there is no intervening node G which is dominated by A , but dominates B. (in other words, A is the first node that dominates B)

Immediate Domination

[Node A immediately dominates node B if there is no intervening node G which is dominated by A, but dominates B. (in other words, A is the first node that dominates B)

A dominates B, C, D, E, F, G
but A immediately dominates only B, C, D

Exhaustive Domination

- Node A exhaustively dominates a SET of TERMINAL nodes $\{B, C, \ldots, D\}$,
- provided it dominates all the members of the set (so that there is no member of the set that is not dominated by A)
- AND there is no terminal node G dominated by A that is not a member of the set.

Exhaustive Domination

Exhaustive Domination

A exhaustively dominates the set $\{B, C, D, E\}$

Exhaustive Domination

A exhaustively dominates the set $\{B, C, D, E\}$ A does NOT exhaustively dominate the set $\{B, C, D\}$

Exhaustive Domination

A exhaustively dominates the set $\{B, C, D, E\}$ A does NOT exhaustively dominate the set $\{B, C, D\}$
A does NOT exhaustively dominate the set $\{B, C, D, E, H\}$

A formal definition of constituency

A formal definition of constituency

Constituent: The set of nodes exhaustively dominated by a single node

A formal definition of constituency

Constituent: The set of nodes exhaustively dominated by a single node

A formal definition of constituency

Constituent: The set of nodes exhaustively dominated by a single node

A formal definition of constituency

Constituent: The set of nodes exhaustively dominated by a single node

A formal definition of constituency

Constituent: The set of nodes exhaustively dominated by a single node

©Andrew Carnie, 2006

A formal definition of constituency

Constituent: The set of nodes exhaustively dominated by a single node

$\{\mathrm{E}, \mathrm{H}\}$ are NOT a constituent

Constituent vs Constifuent of

Constituent vs Constituent of

Constituent of does NOT mean the same thing as constituent.

Constituent vs Constituent of

Constituent of does NOT mean the same thing as constituent.

Essentially 'constituent of' is the opposite of domination.

Constituent vs Constituent of

Constituent of does NOT mean the same thing as constituent.

Essentially 'constituent of' is the opposite of domination.
A dominates B, then we say B is a constituent of A.

Constituent vs Constituent of

Constituent of does NOT mean the same thing as constituent.

Essentially 'constituent of' is the opposite of domination.
A dominates B, then we say B is a constituent of A. immediate constituent of is the opposite of immediate domination.

Some Informal Terms

Some Informal Terms

Mother: the node that immediately dominates another.

Some Informal Terms

Mother: the node that immediately dominates another.

Daughter: the node that is immediately dominated by another (is an immediate constituent of another).

Some Informal Terms

Mother: the node that immediately dominates another.

Daughter: the node that is immediately dominated by another (is an immediate constituent of another).

Sisters: two nodes that share the same mother.

Root and Terminal Nodes

Root and Terminal Nodes

Root node: A node with no mother

Root and Terminal Nodes

Root node: A node with no mother

Terminal node: A node with no daughters

Root and Terminal Nodes

Root node: A node with no mother
Terminal node: A node with no daughters

Root and Terminal Nodes

Root node: A node with no mother
Terminal node: A node with no daughters

©Andrew Carnie, 2006

Root and Terminal Nodes

Root node: A node with no mother
Terminal node: A node with no daughters

©Andrew Carnie, 2006

Precedence

Precedence

Precedence: Node A precedes node B if A is to the left of B. (informal definition)

Precedence

Precedence: Node A precedes node B if A is to the left of B. (informal definition)

- But this runs into problems with trees which are badly drawn

Precedence excludes domination

Precedence excludes domination

Note that if two nodes are in a domination relation they cannot be in a precedence relation

Precedence excludes domination

Note that if two nodes are in a domination relation they cannot be in a precedence relation

Precedence excludes domination

Note that if two nodes are in a domination relation they cannot be in a precedence relation

Is the ball to the left or right of the box?

Precedence excludes domination

Note that if two nodes are in a domination relation they cannot be in a precedence relation

Is the ball to the left or right of the box?
Neither! You can't precede or follow something that dominates (contains) you or you dominate (contain).

Precedence

Precedence

- Consider this poorly drawn tree

Precedence

- Consider this poorly drawn tree

Precedence

- Consider this poorly drawn tree

Does kiss precede clown? Obviously not!

Precedence

- Consider this poorly drawn tree

Does kiss precede clown? Obviously not!

What is crucial here is that the dominator of clown precedes the dominator of kissed

Sister-Precedence

In order to define precedence we're going to need a more local relation that refers to dominance. This is sister-precedence:
A sister-precedes B if and only if

- A and B are immediately dominated by the same node - A appears to the left of B

Sister-Precedence

Sister-Precedence

NP sister-precedes VP

Sister-Precedence

NP sister-precedes VP
D sister precedes N

Sister-Precedence

NP sister-precedes VP
D sister precedes N
N does NOT sister precede V (nor does D)

Precedence

A Precedes B if and only iff

- A does not dominate B and B does not dominate A AND
- Either:
- A sister-precedes B OR
- There is some node E that dominates A, and some node F that dominates B, and E sister-precedes F.

Sister-Precedence $=$ Immediate Precedence

But N does immediately precede V

Sister-Precedence $=$ Immediate Precedence

N does NOT sister-precede V
But N does immediately precede V

No Crossing Branches Constraint

If one node X precedes another node Y then X and all nodes dominated by X must precede Y and all nodes dominated by Y .

No Crossing Branches Constraint

If one node X precedes another node Y then X and all nodes dominated by X must precede Y and all nodes dominated by Y .

Immediate Precedence

\qquad Immediate Precedence:

- A immediately precedes B if there is no node G which follows A but precedes B.

Immediate Precedence

Immediate Precedence:

- A immediately precedes B if there is no node G which follows A but precedes B.
A
B
G

Immediate Precedence

Immediate Precedence:

- A immediately precedes B if there is no node G which follows A but precedes B.
A
B
G
A
G
B

Sister-Precedence \neq Immediote Precedence

But N does immediately precede V

Sister-Precedence \neq Immediote Precedence

N does NOT sister-precede V
But N does immediately precede V

C-command

C-command

Intuitively: The relationship between a node and

 its sister, and all the daughters of its sister
C-command

Intuitively: The relationship between a node and its sister, and all the daughters of its sister

C-command

Intuitively: The relationship between a node and its sister, and all the daughters of its sister

C-command

[Intuitively: The relationship between a node and its sister, and all the daughters of its sister

Note: D does NOT c-command A

C-command

Node A c-commands node B if

every node dominating A also dominates B,
and A does not itself dominate B.

C-command

Node A c-commands node B if
 every node dominating A also dominates B,
 and A does not itself dominate B.

 Sisterhood

C-command

Node A c-commands node B if
 every node dominating A also dominates B, and A does not itself dominate B.
 Sisterhood
 you can't command something you dominate

Symmetric C-command

Symmetric C-command

A symmetrically c-commands B, if $A c$ commands B AND $B C$ commands A

Symmetric C-command

A symmetrically c-commands B, if $A c$ commands B AND $B C$ commands A

SAME THING AS SISTERHOOD

Symmetric C-command

A symmetrically c-commands B, if $A c$ commands B AND $B C$ commands A

Symmetric C-command

A symmetrically c-commands B, if A c-ommands B AND $B C$ commands A

SAME THING AS SISTERHOOD

Symmetric C-command

A symmetrically c-commands B, if A coommands B AND $B C$ commands A

SAME THING AS SISTERHOOD

Symmetric C-command

A symmetrically c-commands B, if A coommands B AND $B C$ commands A

SAME THING AS SISTERHOOD
 A does NOT symmetrically c-command D

Asymmetric C-command

A asymmetrically c-commands B, if $A c$ commands B but B does NOT c-command A.

- (intuitively - A is B^{\prime} s aunt)

Asymmetric C-command

A asymmetrically c-commands B, if A c-commands B but B does NOT c-command A.

- (intuitively - A is B^{\prime} s aunt)

Asymmetric C-command

A asymmetrically c-commands B, if $A c$ commands B but B does NOT c-command A.

- (intuitively - A is B's aunt)

Grammatical Relations

Subject: NP/CP daughter of TP
Object of a Preposition: NP daughter of PP

Direct Object:

 daughter of VP

- With verbs of type $V_{[N P}$ — NP \{NP/PP]\}, an NP or CP daughter of VP that is preceded by another NP daughter of VP. (i.e., the second NP daughter of VP)

Grammatical Relations

Indirect Object: This is the Ist object indicating the goal of a verb of transfer (a ditransitive) or the PP of the same kind of verb:

- With verbs of type $V_{\text {[NP }}$ _ NP Pp], the PP daughter of VP immediately preceded by on NP daughter of VP.
- With verbs of type $V_{[\mathbb{N P}}$ _ $\mathbb{N P}\{\mathbb{N} /(P)]$, the $\mathbb{N P}$ daughter of VP immediately preceded by V (i.e. the first NP daughter of VP)

Oblique: any other NP/PP in the sentence.

Grammatical Relations

Grammatical Relations

Grammatical Relations

Grammatical Relations

Grammatical Relations

Grammatical Relations

Grammatical Relations

Grammatical Relations

OAndrew Carne, goos Adam the book

Grammatical Relations

Grammatical Relations

Grammatical Relations

Adam the book

Grammatical Relations

Grammatical Relations

I gave the book to Adam

Grammatical Relations

I gave the book to Adam

Grammatical Relations

gave Adam the book
I gave the book to Adam

Summary

Structural Relations: relationships between nodes.

Dominance (=containment)

- immediate dominance (=motherhood)
- exhaustive dominance (=constituent)

Precedence (\simeq to the left)

- immediate precedence (=adjacent \& to the left)

Summary

C-command: sisters \& nieces

- Symmetric C-command: sisters

- Asymmetric C-command: Aunt asymmetrically c-commands nieces

Grammatical Relations: Subject, Direct Object, Indirect Object, Object of a Preposition.

