Logical form tutorial
 http://www-rohan.sdsu.edu/~gawron/semantics

Jean Mark Gawron

San Diego State University, Department of Linguistics
2010-08-19

Overview

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation
(6) Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Outline

(1) Introduction

(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation

6 Logical Form
(7) Applying the recipe
(8) Ambiguity
© Embedded sentences

Logical Form

Logical Form

Goal:

- A few simple rules to help the beginner get the hang of translating into logic

Logical Form

Goal:

- A few simple rules to help the beginner get the hang of translating into logic
- Problems

Logical Form

Goal:

- A few simple rules to help the beginner get the hang of translating into logic
- Problems
- There are a LOT of things to cover

Logical Form

Goal:

- A few simple rules to help the beginner get the hang of translating into logic
- Problems
- There are a LOT of things to cover
- The rules can't be complete.

Logical Form

Goal:

- A few simple rules to help the beginner get the hang of translating into logic
- Problems
- There are a LOT of things to cover
- The rules can't be complete.
- Ambiguity of English

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation

6 Logical Form
(7) Applying the recipe
(8) Ambiguity
(0) Embedded sentences

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation
(6) Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Principles

The logical form of an English sentence is a decomposition of the sentence into predicates and connectives. The predicates capture the concepts being expressed. The connectives caoture how the concepts are related.
(1) Almost every noun, verb, and adjectives corresponds to a predicate.

Principles

The logical form of an English sentence is a decomposition of the sentence into predicates and connectives. The predicates capture the concepts being expressed. The connectives caoture how the concepts are related.
(1) Almost every noun, verb, and adjectives corresponds to a predicate.
(2) Exceptions: No auxiliary verb, including the verb be (is, are, was, being, been), corresponds to a predicate.

Principles

The logical form of an English sentence is a decomposition of the sentence into predicates and connectives. The predicates capture the concepts being expressed. The connectives caoture how the concepts are related.
(1) Almost every noun, verb, and adjectives corresponds to a predicate.
(2) Exceptions: No auxiliary verb, including the verb be (is, are, was, being, been), corresponds to a predicate.
(3) Make sure each predicate word is accounted for in your translation.

Principles

The logical form of an English sentence is a decomposition of the sentence into predicates and connectives. The predicates capture the concepts being expressed. The connectives caoture how the concepts are related.
(1) Almost every noun, verb, and adjectives corresponds to a predicate.
(2) Exceptions: No auxiliary verb, including the verb be (is, are, was, being, been), corresponds to a predicate.
(3) Make sure each predicate word is accounted for in your translation.
(9) Use your predicates consistently

Principles

The logical form of an English sentence is a decomposition of the sentence into predicates and connectives. The predicates capture the concepts being expressed. The connectives caoture how the concepts are related.
(1) Almost every noun, verb, and adjectives corresponds to a predicate.
(2) Exceptions: No auxiliary verb, including the verb be (is, are, was, being, been), corresponds to a predicate.
(3) Make sure each predicate word is accounted for in your translation.
(9) Use your predicates consistently
(1) Same arity (same number of arguments)

Principles

The logical form of an English sentence is a decomposition of the sentence into predicates and connectives. The predicates capture the concepts being expressed. The connectives caoture how the concepts are related.
(1) Almost every noun, verb, and adjectives corresponds to a predicate.
(2) Exceptions: No auxiliary verb, including the verb be (is, are, was, being, been), corresponds to a predicate.
(3) Make sure each predicate word is accounted for in your translation.
(9) Use your predicates consistently
(1) Same arity (same number of arguments)
(2) Arguments are in a consistent order

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation
(6) Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Noun, Adj, Prep

	Arity	Comments
Nouns	1-place $\operatorname{man}(x)$	except relational nouns (husband, father) except relational ad- jectives (fond + of, an- Ary + at) except sometimes part of verb meaning (rely + on), object of prep is arg2
1-place happy (x)	from(x, Spain)	

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation

6 Logical Form
(7) Applying the recipe
(8) Ambiguity
(n) Embedded sentences

Connectives

| (both) ... and $\wedge, \&$ | $p \wedge q$
 (Both) John and Bill awakened. |
| :--- | :--- | :--- |
| Sue awakened (both) John and Bill. | |

Connective Principle

Sentential Connective principle

To translate an English sentence using a sentential connective of statement logic, you must find a logically equivalent sentence in which two full sentences are conjoined.

John and Bill awakened. John awakened and Bill awakened. $p=$ John awakened ; q = Bill awakened p \& q
awaken(j) \& awaken(b)
Sue awakened John and Sue awakened John and Sue awakened Bill. Bill.
$\mathrm{p}=$ Sue awakened John; $\mathrm{q}=$ Sue awakened Bill
$\mathrm{p} \& \mathrm{q}$
awaken2($\mathrm{s}, \mathrm{j})$ \& awaken2($\mathrm{s}, \mathrm{b})$

Connective examples

Neither John nor Bill John didn't awaken and Bill didn't awaken. awakened.

$$
\begin{aligned}
& \mathrm{Q}=\text { awaken; } \mathrm{p}=\text { John Q'ed } ; \mathrm{q}=\text { Bill Q'ed } \\
& \sim p \& \sim q \\
& \sim(p \vee q)
\end{aligned}
$$

Truth table

J. Q'ed	B. Q'ed	Neither J. nor B. Q'ed	$\sim p \& \sim q$	$\sim(p \vee q)$
T	T	F	F	F
T	F	F	F	F
F	T	F	F	F
F	F	T	T	T

Verbs

	Arity		Comments
intransitive	1-place	walk(j)	walk, faint, sleep, fall, ... Ignore tense.
transitive	2-place	$\begin{aligned} & \operatorname{hit}(\mathrm{j}, \mathrm{f}) \\ & \operatorname{love}(\mathrm{m}, \mathrm{j}) \end{aligned}$	hit, kill, kick, eat, ... unpassivize passive sentences (John was loved by Mary \rightarrow Mary loved John)
ditransitive	3 -place	give (m, b, j)	give, send, cost, charge,
Auxiliaries	syncateg	rematic	be, do*, have*, may, might, can, could, should, shall, will, would

*: do and have are ambiguous. They are also transitive verbs.

Arity issues

The arity of a predicate is the number of arguments it has.
a. John showed Mary the picture. show(j, m, p)
b. John showed Mary. show(j, m) NO NO! Ignore p. 36!
c. \quad show $2(\mathrm{j}, \mathrm{m})$

Predicate Principle

The arity of a linguistic predicate is the number of syntactic arguments it has.
(1) If it's obligatory, it's an argument.
(2) If the same verb shows up with different sets of arguments, use different predicates.
(3) Location, Time, and Manner are usually not arguments:
a. Time John painted the room yesterday. paint(j, r)
b. Location John wrote his essay in the study, write(j,e)
c. Manner John hid the letter carefully. hide (j, I)

Predicate Principle examples

John painted the kitchen
John painted in the kitchen.
Da Vinci painted the Mona Lisa
John gave the book to Mary. give(j,b,m)
John gave Mary the book.
WRONG!
give(j,b,m)
give(j,m,b)
Mary was given the book by John. give($\mathrm{j}, \mathrm{b}, \mathrm{m}$)
Mary was given the book. give2(m, b)

Predicate Principle examples

John painted the kitchen
John painted in the kitchen.
Da Vinci painted the Mona Lisa
John gave the book to Mary.
John gave Mary the book.
WRONG!
Mary was given the book by John.
Mary was given the book.

> paint(j, k)
> paint2(j)
paint32(d,m)
give(j,b,m)
give(j,b,m)
give (j, m,b)
give(j,b,m)
give2(m, b)

Complex Predicates

Sometimes a predicate will be expressed by more than one word.
a. John signed up for the class. sign-up-for(j,c)
b. John blacked out in the study. black-out(j,e)
c. John called up Sue John called Sue up. call-up(j,s)

Frequently such complex predicates are combinations of verbs and prepositions. It's convenient to use both the verb and preposition in naming such predicates, because it often helps make the meaning clear, and keeps different meanings distinct (call-up vs call-on)

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates

4 Predicate logic
(5) A recipe for English-to-Logic translation
(6) Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Connectives: Quantifiers, negation, and sentential

Universals (\forall), Existentials (\exists), and negation \sim correspond to appropriate English words, and each quantifier goes with its appropriate sentential connective:

every, all, any	\forall	\forall	\rightarrow	$\forall x \operatorname{dog}(x) \rightarrow \operatorname{bark}(x)$
some, a, a certain	\exists	\exists	$\&$	$\exists x \operatorname{dog}(x) \& \operatorname{bark}(x)$
not, n't	\sim			
no	$\sim \exists$	$\sim \exists$	$\&$	$\sim \exists x \operatorname{dog}(x) \& \operatorname{bark}(x)$

Ambiguity

(1) a. Every prize was won by some high school kid.

Ambiguity

(2) a. Every prize was won by some high school kid.
b. For every prize, x, there was some high school kid, y, such that y won x.
b. $\quad \forall x[\operatorname{prize}(x) \rightarrow \exists y[\operatorname{high}-\operatorname{school-kid}(y) \& \operatorname{win}(y, x)]]$

Ambiguity

(3) a. Every prize was won by some high school kid.
b. For every prize, x, there was some high school kid, y, such that y won x.
c. Some particular high school kid y won every prize, x.
b. $\forall x[\operatorname{prize}(x) \rightarrow \exists y[$ high-school- $\operatorname{kid}(y) \& \operatorname{win}(y, x)]]$
c. $\exists y[\operatorname{high}-\operatorname{school}-\operatorname{kid}(y) \& \forall x[\operatorname{prize}(x) \rightarrow \operatorname{win}(y, x)]]$

Ambiguity

(4) a. Every prize was won by some high school kid.
b. For every prize, x, there was some high school kid, y, such that y won x.
c. Some particular high school kid y won every prize, x.
b. $\quad \forall x[\operatorname{prize}(x) \rightarrow \exists y[\operatorname{high}-\operatorname{school}-\operatorname{kid}(y) \& \operatorname{win}(y, x)]]$
c. $\exists y[\operatorname{high}-\operatorname{school-kid}(y) \& \forall x[\operatorname{prize}(x) \rightarrow \operatorname{win}(y, x)]]$

The two translations share all the same predicates, and even the arguments of the predicates are the same. All that differs is the way the predications are connected.

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kidx $\exists x \operatorname{kid}(x)$

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid $_{x}$ $\exists x \operatorname{kid}(x)$
a tall kid $_{x}$

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid $_{x}$
a tall kid $_{x}$

```
\existsxid(x)
\existsx\operatorname{tall(x) & kid}(x)
```


Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid ${ }_{x}$ from Spain
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid ${ }_{x}$ from Spain
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid ${ }_{x}$ from Spain
a tall kid ${ }_{x}$ from Spain

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
$a \operatorname{kid}_{x}$ from Spain $\quad \exists x \operatorname{kid}(x) \&$ from (x, s)
a tall kid_{x} from Spain $\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from $(x, \mathrm{~s})$

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
$a \operatorname{kid}_{x}$ from Spain $\quad \exists x \operatorname{kid}(x) \&$ from (x, s)
a tall kid_{x} from Spain $\quad \exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
a high school kid ${ }_{x}$

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
$\exists x \operatorname{kid}(x)$
a tall kid $_{x}$
a kid $_{x}$ from Spain
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
a tall kid $_{x}$ from Spain a high school kid $_{x}$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$
Wrong!

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid $_{x}$ from Spain
a tall kid $_{x}$ from Spain a high school kid $_{x}$
a high school kid $_{x}$
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$

Wrong!

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid $_{x}$ from Spain
a tall kid $_{x}$ from Spain a high school kid $_{x}$
a high school kid $_{x}$
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$
$\exists x$ high-school-kid (x)

Wrong!
Right!

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid $_{x}$ from Spain
a tall kid $_{x}$ from Spain a high school kid $_{x}$
a high school kid $_{x}$
a man_{x} I like
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$
$\exists x$ high-school-kid (x)

Wrong!
Right!

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid $_{x}$ from Spain
a tall kid $_{x}$ from Spain a high school kid $_{x}$
a high school kid $_{x}$
a man_{x} I like
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$
$\exists x$ high-school-kid (x)
$\exists x \operatorname{man}(x)$ \& like(I)

Wrong!
Right!

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid $_{x}$ from Spain
a tall kid $_{x}$ from Spain a high school kid $_{x}$
a high school kid $_{x}$
a man_{x} I like
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$
$\exists x$ high-school-kid (x)
$\exists x \operatorname{man}(x)$ \& like (1)
$\exists x \operatorname{man}(x) \&$ like $(1, x)$

Wrong!
Right!

Noun phrases

Translate each Noun phrase (NP) in isolation.
Some examples of noun phrase translations
a kid_{x}
a tall kid $_{x}$
a kid $_{x}$ from Spain
a tall kid $_{x}$ from Spain a high school kid $_{x}$
a high school kid $_{x}$
a man_{x} I like
$\exists x \operatorname{kid}(x)$
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x)$
$\exists x \operatorname{kid}(x) \&$ from (x, s)
$\exists x \operatorname{tall}(x) \& \operatorname{kid}(x) \&$ from (x, s)
$\exists x$ high-school $(x) \& \operatorname{kid}(x)$
$\exists x$ high-school-kid (x)
$\exists x \operatorname{man}(x)$ \& like(I)
$\exists x \operatorname{man}(x) \&$ like $(1, x)$

Wrong!
Right!
Wrong!
Right!

Important principle

NP modifiers
A $\operatorname{kid}_{x} \quad$ from Spain
$\exists x \operatorname{kid}(x) \quad \& \quad$ from $(, s)$

Important principle

NP modifiers

A	kid_{x}		from Spain
$\exists x$	$\operatorname{kid}(x)$	$\&$	from (x, s)
			\uparrow

The NP variable always occurs in the translations of its modifiers.

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation
(6) Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Procedure: Simple version

Initial sentence

Some young woman arrived.

Procedure: Simple version

Initial sentence

Some young woman arrived.
(1) Find each quantified NP, and choose a variable for it.

Procedure: Simple version

Initial sentence

Some young woman arrived.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Some young woman ${ }_{x}$ arrived.

Procedure: Simple version

Initial sentence

Some young woman arrived.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Some young woman ${ }_{x}$ arrived.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.

Procedure: Simple version

Initial sentence

Some young woman arrived.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPs

Some young woman ${ }_{x}$ arrived.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.
2. Remove Quantified NPs
Moved out

Sentence
x arrived.

Procedure: Simple version

Initial sentence

Some young woman arrived.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPs

Some young woman ${ }_{x}$ arrived.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind. But keep it around for later!
2. Remove Quantified NPs

Moved out	Sentence
Some young woman ${ }_{x}$	x arrived.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
A young woman	x arrived.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:

3. NPs \rightarrow logic	
Moved out	Sentence
$\exists x$ woman $(x) \&$ young (x)	x arrived.

(9) Turn the sentence into logic, using predicate principles.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\exists x$ woman (x) \& young (x)	x arrived.

(9) Turn the sentence into logic, using predicate principles.
4. Sentence \rightarrow logic

Moved out	Sentence
$\exists x$ woman $(x) \&$ young (x)	$\operatorname{arrive}(x)$.

Procedure concluded

(5) Add each NP translation back one at a time, using the right sentential connective:

Procedure concluded

(9) Add each NP translation back one at a time, using the right sentential connective:
5. Move NP's back

Moved out Sentence $\exists x$ woman (x) \& young (x) \& arrive (x)

Summary

Find Qtfd NPs

1.	Some young woman	arrived.
2.		
3.		
4.		
5.		

Summary

Remove Qtfd NPs

1.	Some young woman	arrived.
2.	x arrived.	
3.		
4.		
5.		

Summary

Remove Qtfd NPs

| 1. | | Some young woman ${ }_{x}$ | arrived. |
| :--- | :--- | :--- | :--- | :--- |
| 2. | Some young woman | x arrived. | |
| 3. | | | |
| 4. | | | |
| 5. | | | |

Summary

NPS \rightarrow logic

1.		Some young woman	arrived.
2.	Some young woman $_{x}$	x arrived.	
3.	$\exists x$ young $(x) \&$	x arrived.	
moman (x)			
4.			
5.			

Summary

$\mathrm{S} \rightarrow$ logic

1.		Some young woman ${ }_{x}$	arrived.
2.	Some young woman ${ }_{x}$	x arrived.	
3.	$\begin{aligned} & \exists x \text { young }(x) \& \\ & \quad \text { woman }(x) \end{aligned}$	x arrived.	
4.	$\begin{aligned} & \exists x \text { young }(x) \& \\ & \quad \operatorname{woman}(x) \end{aligned}$	arrive(x)	

Summary

Move NPs back

1.		Some young woman ${ }_{\text {c }}$	arrived.
2.	Some young woman ${ }^{\text {a }}$	x arrived.	
3.	$\begin{aligned} & \exists x \text { young }(x) \& \\ & \quad \text { woman }(x) \end{aligned}$	x arrived.	
4.	$\begin{aligned} & \exists x \text { young }(x) \& \\ & \quad \operatorname{woman}(x) \end{aligned}$	$\operatorname{arrive}(x)$	
5.		$\exists x$ young (x) \& woman (x) \& arrive (x)	

Outline

(1) Introduction
2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation
(6) Logical Form
(7) Applying the recipe
(8) Ambiguity
๑. Embedded sentences

Non ambiguous sentences?

(5) a. Everyone in this room speaks two languages.
b. Two languages are spoken by everyone in this room.
c. It is certain that no one will leave.
d. No one is certain to leave.

What kind of ambiguity?

This is getting weird

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation

6 Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

A different example

Initial sentence
 Utopia welcomes every traveler from Spain.

A different example

Initial sentence
 Utopia welcomes every traveler from Spain.

(1) Find each quantified NP, and choose a variable for it.

A different example

Initial sentence

Utopia welcomes every traveler from Spain.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPs

Utopia welcomes every traveler ${ }_{x}$ from Spain

A different example

Initial sentence

Utopia welcomes every traveler from Spain.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Utopia welcomes every traveler ${ }_{x}$ from Spain
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.

A different example

Initial sentence

Utopia welcomes every traveler from Spain.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Utopia welcomes every traveler ${ }_{x}$ from Spain
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.
2. Remove Quantified NPs

Moved out	Sentence
	Utopia welcomes x.

A different example

Initial sentence

Utopia welcomes every traveler from Spain.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Utopia welcomes every traveler ${ }_{x}$ from Spain
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind. But keep it around for later!
2. Remove Quantified NPS

Moved out	Sentence
every traveler from Spain	Utopia welcomes x.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\forall x$ traveler $(x) \&$ from $(x, \mathrm{~s})$	Utopia welcomes x.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\forall x \operatorname{traveler}(x) \&$ from $(x, \mathrm{~s})$	Utopia welcomes x.

(9) Turn the sentence into logic, using predicate principles.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic
Moved out
$\forall x$ traveler $(x) \& \operatorname{from}(x, \mathrm{~s})$

Sentence

Utopia welcomes x.
(9) Turn the sentence into logic, using predicate principles.
4. Sentence \rightarrow logic

Moved out	Sentence
$\forall x$ traveler $(x) \&$ from $(x, \mathrm{~S})$	welcome (U, x).

Procedure concluded

(5) Add each NP translation back one at a time, using the right sentential connective:

Procedure concluded

(9) Add each NP translation back one at a time, using the right sentential connective:
5. Move NP's back

Moved out Sentence
$\forall x$ traveler $(x) \&$ from $(x, \mathrm{~s}) \rightarrow$ welcome (U, x)

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation

6 Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Two qtfd NPs

(6) a. Every prize was won by some high school kid.

Two qtfd nps

(7) a. Every prize was won by some high school kid.
b. Some high school kid won every prize. (unpassivized form)

Step 0. Unpassivize.

Two qtfd NPs

(8) a. Every prize was won by some high school kid.
b. Some high school kid won every prize. (unpassivized form)

Step 0. Unpassivize.
(1) Find each quantified NP, and choose a variable for it.

Two qtfd NPs

(9) a. Every prize was won by some high school kid.
b. Some high school kid won every prize. (unpassivized form)

Step 0. Unpassivize.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Some high school kid $_{x}$ won every prize ${ }_{y}$.

Two qtfd NPs

(10) a. Every prize was won by some high school kid.
b. Some high school kid won every prize. (unpassivized form)

Step 0. Unpassivize.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Some high school kid $_{x}$ won every prize ${ }_{y}$.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.

Two qtfd NPs

(11) a. Every prize was won by some high school kid.
b. Some high school kid won every prize. (unpassivized form)

Step 0. Unpassivize.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Some high school kid $_{x}$ won every prize ${ }_{y}$.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.
2. Remove Quantified NPS

Moved out	Sentence
Some high school kid $_{x}$	x won y.
every prize $_{y}$	

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\exists x$ high-school-kid (x)	x won y.
$\forall y$ prize (y)	

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\exists x$ high-school-kid (x)	x won y.
$\forall y$ prize (y)	

(9) Turn the sentence into logic, using predicate principles.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPs \rightarrow logic

Moved out	Sentence
$\exists x$ high-school-kid (x)	x won y.
$\forall y$ prize (y)	

(9) Turn the sentence into logic, using predicate principles.
4. Sentence \rightarrow logic

Moved out	Sentence
$\exists x$ high-school-kid (x)	$\operatorname{win}(x, y)$
$\forall y$ prize (y)	

Procedure concluded, rdg 1

(3) Add each NP translation back one at a time, using the right sentential connective:

Procedure concluded, rdg 1

(3) Add each NP translation back one at a time, using the right sentential connective:

5a. Move first NP back, using right connective (\&).

Moved out	Sentence
$\forall y$ prize (y)	$\exists x$ high-school-kid $(x) \& \operatorname{win}(x, y)$

Procedure concluded, rdg 1

(3) Add each NP translation back one at a time, using the right sentential connective:

5a. Move first NP back, using right connective (\&).

Moved out	Sentence
$\forall \forall y \operatorname{prize}(y)$	$\exists x$ high-school-kid $(x) \& \operatorname{win}(x, y)$

5b. Move second NP back, using right connective (\rightarrow).
Moved out \quad Sentence
$\forall y \operatorname{prize}(y) \rightarrow(\exists x$ high-school-kid $(x) \& \operatorname{win}(x, y))$

Second reading

Hold on! We've only got ONE of the two readings!
(12) a. For every prize, x, there was some high school kid, y, such that y won x.

a. $\forall x[\operatorname{prize}(x) \rightarrow \exists y[\operatorname{high}-\operatorname{school-kid}(y) \& \operatorname{win}(y, x)]]$

b.

Second reading

Hold on! We've only got ONE of the two readings!
(13) a. For every prize, x, there was some high school kid, y, such that y won x.
b. Some particular high school kid, y, won every prize, x.

$$
\begin{array}{ll}
\text { a. } & \forall x[\operatorname{prize}(x) \rightarrow \exists y[\operatorname{high}-\operatorname{school-kid}(y) \& \operatorname{win}(y, x)]] \\
\text { b. } & \exists y[\operatorname{high}-\operatorname{school}-\operatorname{kid}(y) \& \forall x[\operatorname{prize}(x) \rightarrow \operatorname{win}(y, x)]]
\end{array}
$$

Procedure concluded, rdg 2

(3) Add each NP translation back one at a time, using the right sentential connective:

Procedure concluded, rdg 2

(3) Add each NP translation back one at a time, using the right sentential connective:

5a. Move second NP back, using right connective (\rightarrow).

Moved out	Sentence
$\exists x$ high-school-kid (x)	$\forall y$ prize $(y) \rightarrow \operatorname{win}(x, y)$

Procedure concluded, rdg 2

(5) Add each NP translation back one at a time, using the right sentential connective:

5a. Move second NP back, using right connective (\rightarrow).

Moved out
$\exists x$ high-school-kid(x)

Sentence
$\forall y \operatorname{prize}(y) \rightarrow \operatorname{win}(x, y)$

5b. Move first NP back, using right connective (\&).

Moved out | Sentence |
| :--- |

$\exists x$ high-school-kid $(x) \&(\forall y \operatorname{prize}(y) \rightarrow \operatorname{win}(x, y))$

Consequences

Consequences

Consequences

> What we did
> We were able to capture the ambiguity by allowing the quantified NPS to recombine with the main sentence translation in either order.

Consequences

> What we did
> We were able to capture the ambiguity by allowing the quantified NPS to recombine with the main sentence translation in either order.

Consequences

What we did

We were able to capture the ambiguity by allowing the quantified NPS to recombine with the main sentence translation in either order.

A new kind of ambiguity

Consequences

What we did

We were able to capture the ambiguity by allowing the quantified NPs to recombine with the main sentence translation in either order.

A new kind of ambiguity
(1) Not lexical ambiguity

Consequences

What we did

We were able to capture the ambiguity by allowing the quantified NPS to recombine with the main sentence translation in either order.

A new kind of ambiguity
(1) Not lexical ambiguity
(2) Not syntactic ambiguity.

Consequences

What we did

We were able to capture the ambiguity by allowing the quantified NPS to recombine with the main sentence translation in either order.

A new kind of ambiguity
(1) Not lexical ambiguity
(2) Not syntactic ambiguity.
(3) What is it?

Summary

Separating NP meanings from sentences

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Find all Qtfd NPs and choose variable for each.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd nPs, leaving behind their variables.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd nPs, leaving behind their variables.
- Translate each NP into logic.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd nPs, leaving behind their variables.
- Translate each NP into logic.
- Translate the main s into logic.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd nPs, leaving behind their variables.
- Translate each NP into logic.
- Translate the main s into logic.
- Move the NPs back. Putting the NPs back in different orders will capture different readings.

Outline

(1) Introduction
(2) Background ideas

- General principles
- Predicate Principles
(3) Statement logic/predicates
(4) Predicate logic
(5) A recipe for English-to-Logic translation

6 Logical Form
(7) Applying the recipe
(8) Ambiguity
(9) Embedded sentences

Relative clause

Replace pronouns with their antecedents.
(14) a. Maxine sent every letter John had written to her to Ruth.

Relative clause

Replace pronouns with their antecedents.
(15) a. Maxine sent every letter John had written to her to Ruth.
b. Maxine sent every letter John had written to Maxine to Ruth.

Relative clause

Replace pronouns with their antecedents.
(16) a. Maxine sent every letter John had written to her to Ruth.
b. Maxine sent every letter John had written to Maxine to Ruth.
(1) Find each quantified NP, and choose a variable for it.

Relative clause

Replace pronouns with their antecedents.
(17) a. Maxine sent every letter John had written to her to Ruth.
b. Maxine sent every letter John had written to Maxine to Ruth.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPS

Maxine sent every letter ${ }_{x}$ John had written to Maxine to Ruth.

Relative clause

Replace pronouns with their antecedents.
(18) a. Maxine sent every letter John had written to her to Ruth.
b. Maxine sent every letter John had written to Maxine to Ruth.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPs

Maxine sent every letter ${ }_{x}$ John had written to Maxine to Ruth.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.

Relative clause

Replace pronouns with their antecedents.
(19) a. Maxine sent every letter John had written to her to Ruth.
b. Maxine sent every letter John had written to Maxine to Ruth.
(1) Find each quantified NP, and choose a variable for it.

1. Find Quantified NPs

Maxine sent every letter ${ }_{x}$ John had written to Maxine to Ruth.
(2) Move each quantified NP out of the sentence, leaving the variable you chose behind.
2. Remove Quantified NPs

Moved out	Sentence
every letter ${ }_{x}$ John had written to Maxine	Maxine sent x to Ruth.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\forall x$ letter $(x) \&$ write(J, x, M)	Maxine sent x to Ruth.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\forall x$ letter $(x) \&$ write(J, x, M)	Maxine sent x to Ruth.

(9) Turn the sentence into logic, using predicate principles.

Continuing procedure

(3) Translate each quantified NP into logic, replacing the head noun with a 1-place predicate whose argument is the NP variable:
3. NPS \rightarrow logic

Moved out	Sentence
$\forall x$ letter $(x) \&$ write $(\mathrm{J}, x, \mathrm{M})$	Maxine sent x to Ruth.

(9) Turn the sentence into logic, using predicate principles.
4. Sentence \rightarrow logic

Moved out	Sentence
$\forall x$ letter $(x) \&$ write $(\mathrm{J}, \mathrm{x}, \mathrm{M})$	send(M, $x, \mathrm{R})$.

Procedure concluded

(5) Add each NP translation back one at a time, using the right sentential connective:

Procedure concluded

(9) Add each NP translation back one at a time, using the right sentential connective:
5. Move NP's back

Moved out Sentence

$$
\forall x(\operatorname{letter}(x) \& \operatorname{write}(\mathrm{~J}, x, \mathrm{M})) \rightarrow \operatorname{send}(\mathrm{M}, x, \mathrm{R}) .
$$

A complicated NP

Every letter ${ }_{x}$ John had sent to Maxine $\forall x$ letter $(x) \&$ write $(\mathrm{J}, \mathrm{x}, \mathrm{m})$
(1) Recognize this Noun phrase contains a SENTENCE (relative clause). every letter [s John had sent to Maxine] SUBJ VERB PP

A complicated NP

Every letter ${ }_{x}$ John had sent to Maxine $\forall x$ letter $(x) \&$ write($\mathrm{J}, x, \mathrm{M})$
(1) Recognize this Noun phrase contains a SENTENCE (relative clause). every letter [s John had sent to Maxine] SUBJ VERB PP

That sentence says something about x

$$
\begin{aligned}
? & \text { John had sent to Maxine. } \\
\text { every letter } x & {[\text { John had sent } x \text { to Maxine] }} \\
& \operatorname{send}(\mathrm{J}, x, \mathrm{M})
\end{aligned}
$$

A complicated NP

> Every letter ${ }_{x}$ John had sent to Maxine $\forall x$ letter $(x) \&$ write($(\mathrm{J}, x, \mathrm{M})$
(1) Recognize this Noun phrase contains a SENTENCE (relative clause). every letter [s John had sent to Maxine] SUBJ VERB PP

That sentence says something about x

```
    ? John had sent to Maxine.
every letter x [John had sent x to Maxine]
    send(J, x, m)
```

(2) Find where x goes, and translate the sentence on its own; add the translation to the translation of the NP:

$$
\forall x \text { letter }(x) \& \operatorname{send}(\mathrm{~J}, x, \mathrm{~m})
$$

Summary

Separating NP meanings from sentences

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Remove pronouns, if necessary.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Remove pronouns, if necessary.
- Find all Qtfd NPs and choose variable for each.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Remove pronouns, if necessary.
- Find all Qtfd nps and choose variable for each.
- Remove Qtfd NPs, leaving behind their variables.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Remove pronouns, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd nPs, leaving behind their variables.
- Translate each NP into logic, making sure you understand how each modifier relates to the NP variable.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Remove pronouns, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd nPs, leaving behind their variables.
- Translate each NP into logic, making sure you understand how each modifier relates to the NP variable.
- Translate the main S into logic.

Summary

Separating NP meanings from sentences

- Unpassivize the sentence, if necessary.
- Remove pronouns, if necessary.
- Find all Qtfd NPs and choose variable for each.
- Remove Qtfd NPs, leaving behind their variables.
- Translate each NP into logic, making sure you understand how each modifier relates to the NP variable.
- Translate the main s into logic.
- Move the NPs back. Putting the NPs back in different orders will capture different readings.

Translations discussed

(20) a. A young woman arrived.
b. Utopia welcomes every traveler from Spain.
c. Every prize was won by some high school student.
d. Maxine sent every letter John had written to her to Ruth.

Other translations

(1) No spider plants dance.

Other translations

(1) No spider plants dance.

$$
\sim \exists x \text { spider-plant }(x) \& \text { dance }(x)
$$

(2) There is a Santa Claus. [Paraphrase this as A Santa Claus exists]

Other translations

(1) No spider plants dance.

$$
\sim \exists x \text { spider-plant }(x) \& \text { dance }(x)
$$

(2) There is a Santa Claus. [Paraphrase this as A Santa Claus exists]

$$
\exists x \text { Santa Claus }(x) \& \text { exists }(x)
$$

(3) There's no business like show business. [Treat show business as a name; treat there is as before, paraphrase: No business like show business exists, treat like as a preposition]

Other translations

(1) No spider plants dance.

$$
\sim \exists x \text { spider-plant }(x) \& \text { dance }(x)
$$

(2) There is a Santa Claus. [Paraphrase this as A Santa Claus exists]

$$
\exists x \text { Santa Claus }(x) \& \text { exists }(x)
$$

(3) There's no business like show business. [Treat show business as a name; treat there is as before, paraphrase: No business like show business exists, treat like as a preposition]

$$
\sim \exists \operatorname{business}(x) \& \text { like }(x, \mathrm{sB}) \& \operatorname{exists}(x)
$$

Other translations: Conjunction

Conjunction can often be treated by producing a paraphrase with two conjoined sentences:
(4) Grammar A generates all and only well-formed formula. [paraphase this as Grammar A generates all well-formed formula and Grammar A generates only well-formed formula.; translate each conjoined sentence on its own.]

