Chapter Three Exercise Answers

 http://www-rohan.sdsu.edu/~gawron/semanticsJean Mark Gawron

San Diego State University, Department of Linguistics
2010-08-19

Overview

(1) Introduction

Outline

(1) Introduction

Question 1

a. Every possum was brown. $\quad \forall x[$ possum $(x) \rightarrow \operatorname{brown}(x)]$
b. John ate a sandwich. $\exists x[\operatorname{sandwich}(x) \& \operatorname{eat}(j, x)]$
c. A young woman spoke $\exists x[\operatorname{woman}(x) \&$ young $(x) \&$ speak (x)]
d. Kerry filled all the gaps. $\quad \forall x[\operatorname{gap}(x) \rightarrow$ fill $(\mathrm{k}, x)]$ e. Every guest thanked Jones. $\forall x[\operatorname{guest}(x) \rightarrow \operatorname{thank}(x, j)]$

Question 2

a. There was a black hat on the $\exists x[\operatorname{hat}(x) \& \operatorname{black}(x) \&$ bed. on (x, the bed)]
$=$ A black hat was on the bed.
b. All roads lead to Rome $\quad \forall x[\operatorname{road}(x) \rightarrow$ lead-to $(x, r)]$
c. Utopia welcomes all travelers $\forall x[(\operatorname{traveler}(x) \&$ from $(x, \mathrm{~s}))$ from Spain.
d. Clive got murdered.
\rightarrow welcome (U, x)]
$=$ Clive was murdered.
$=$ Someone murdered Clive.
e. Jones read every book in the $\forall x[(\operatorname{book}(x) \& i n(x$, library $)) \rightarrow$ library. $\operatorname{read}(j, x)]$

Question 3d

Breaking the sentence into two pieces
C. gave [np every child] [np either a bisc. or a Bc] $]_{z}$ \rightarrow
[np either a bisc. or a Bc$]_{z} \mathrm{C}$. gave [np every child] z
either a biscuit or $\exists z[\operatorname{biscuit}(z) \vee \operatorname{Bc}(z)] \& \ldots$
a batman comic
Clive gave every $\forall x[\operatorname{child}(x) \rightarrow \operatorname{give}(c, z, x)]$ child z

1. $\exists z[[\operatorname{biscuit}(z) \vee \operatorname{Bc}(z)] \& \forall x[\operatorname{child}(x) \rightarrow \operatorname{give}(c, z, x)]]$
2. $\forall x[\operatorname{child}(x) \rightarrow \exists x[[\operatorname{biscuit}(x) \vee \operatorname{Bc}(z)] \&$ give $(c, z, x)]]$

There's no biz like show biz!

$\sim \exists x[$ business $(x) \&$ like $(x$, sb) $]$
Or if you think show business is a business and you think show business is like itself (and you don't think the semantics should be contradictory), then you think the sentence means something like There's no business like show business - except show business.

$$
\sim \exists x[\operatorname{business}(x) \& x \neq \operatorname{sb} \& \operatorname{like}(x, \text { sb })]
$$

