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Word Prediction

 Guess the next word...
 ... I notice three guys standing on the ???

 There are many sources of knowledge that
can be used to inform this task, including
arbitrary world knowledge.

 But it turns out that you can do pretty well
by simply looking at the preceding words
and keeping track of some fairly simple
counts.
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Word Prediction

 We can formalize this task using what are
called N-gram models.

 N-grams are token sequences of length N.
 Our earlier example contains the following

2-grams (aka bigrams)
 (I notice), (notice three), (three guys), (guys

standing), (standing on), (on the)

 Given knowledge of counts of N-grams such
as these, we can guess likely next words in
a sequence.
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N-Gram Models

 More formally, we can use knowledge of
the counts of N-grams to assess the
conditional probability of candidate words
as the next word in a sequence.

 Or, we can use them to assess the
probability of an entire sequence of words.
 Pretty much the same thing as we’ll see...
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Applications

 It turns out that being able to predict the next
word (or any linguistic unit) in a sequence is an
extremely useful thing to be able to do.

 As we’ll see, it lies at the core of the following
applications
 Automatic speech recognition
 Handwriting and character recognition
 Spelling correction
 Machine translation
 And many more.
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Counting

 Simple counting lies at the core of any
probabilistic approach. So let’s first take a
look at what we’re counting.
 He stepped out into the hall, was delighted to

encounter a water brother.
 13 tokens, 15 if we include “,” and “.” as separate

tokens.
 Assuming we include the comma and period, how

many bigrams are there?
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Counting

 Not always that simple
 I do uh main- mainly business data processing

 Spoken language poses various challenges.
 Should we count “uh” and other fillers as tokens?
 What about the repetition of “mainly”? Should such do-

overs count twice or just once?
 The answers depend on the application.

 If we’re focusing on something like ASR to support indexing for
search, then “uh” isn’t helpful (it’s not likely to occur as a query).

 But filled pauses are very useful in dialog management, so we
might want them there.
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Counting: Types and Tokens

 How about
 They picnicked by the pool, then lay back on

the grass and looked at the stars.
 18 tokens (again counting punctuation)

 But we might also note that “the” is used
3 times, so there are only 16 unique types
(as opposed to tokens).

 In going forward, we’ll have occasion to
focus on counting both types and tokens
of both words and N-grams.
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Counting: Wordforms

 Should “cats” and “cat” count as the same
when we’re counting?

 How about “geese” and “goose”?
 Some terminology:

 Lemma: a set of lexical forms having the
same stem, major part of speech, and rough
word sense

 Wordform: fully inflected surface form

 Again, we’ll have occasion to count both
lemmas and wordforms
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Counting: Corpora

 So what happens when we look at large bodies
of text instead of single utterances?

 Brown et al (1992) large corpus of English text
 583 million wordform tokens
 293,181 wordform types

 Google
 Crawl of 1,024,908,267,229 English tokens
 13,588,391 wordform types

 That seems like a lot of types...  After all, even large dictionaries of English
have only around 500k types. Why so many here?

•Numbers
•Misspellings
•Names
•Acronyms
•etc
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Language Modeling

 Back to word prediction
 We can model the word prediction task as

the ability to assess the conditional
probability of a word given the previous
words in the sequence
 P(wn|w1,w2…wn-1)

 We’ll call a statistical model that can
assess this a Language Model
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Language Modeling

 How might we go about calculating such a
conditional probability?
 One way is to use the definition of conditional

probabilities and look for counts. So to get
 P(the | its water is so transparent that)

 By definition that’s
P(its water is so transparent that the)
  P(its water is so transparent that)
We can get each of those from counts in a large

corpus.
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Very Easy Estimate

 How to estimate?
 P(the | its water is so transparent that)

P(the | its water is so transparent that) =
Count(its water is so transparent that the)
  Count(its water is so transparent that)
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Very Easy Estimate

 According to Google those counts are 5/9.
 Unfortunately... 2 of those were to these

slides... So maybe it’s really
 3/7
 In any case, that’s not terribly convincing due

to the small numbers involved.
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Language Modeling

 Unfortunately, for most sequences and for
most text collections we won’t get good
estimates from this method.
 What we’re likely to get is 0. Or worse 0/0.

 Clearly, we’ll have to be a little more
clever.
 Let’s use the chain rule of probability
 And a particularly useful independence

assumption.



8/1/08                                          Speech and Language Processing - Jurafsky and Martin 17

The Chain Rule

 Recall the definition of conditional probabilities

 Rewriting:

 For sequences...
 P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

 In general
 P(x1,x2,x3,…xn) =

P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

)(

)^(
)|(

BP

BAP
BAP =

)()|()^( BPBAPBAP =
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The Chain Rule

P(its water was so transparent)=
P(its)*
    P(water|its)*
       P(was|its water)*
          P(so|its water was)*
             P(transparent|its water was so)
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Unfortunately

 There are still a lot of possible sentences
 In general, we’ll never be able to get

enough data to compute the statistics for
those longer prefixes
 Same problem we had for the strings

themselves
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Independence Assumption

 Make the simplifying assumption
 P(lizard|the,other,day,I,was,walking,along,an

d,saw,a) = P(lizard|a)
 Or maybe

 P(lizard|the,other,day,I,was,walking,along,an
d,saw,a) = P(lizard|saw,a)

 That is, the probability in question is
independent of its earlier history.
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Independence Assumption

 This particular kind of independence assumption
is called a Markov assumption after the Russian
mathematician Andrei Markov.
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So for each component in the product replace with the
approximation (assuming a prefix of N)

 Bigram version

! 
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Estimating Bigram
Probabilities

 The Maximum Likelihood Estimate (MLE)
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An Example

 <s> I am Sam </s>
 <s> Sam I am </s>
 <s> I do not like green eggs and ham </s>
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Maximum Likelihood Estimates

 The maximum likelihood estimate of some parameter of
a model M from a training set T
 Is the estimate that maximizes the likelihood of the training set

T given the model M

 Suppose the word Chinese occurs 400 times in a corpus
of a million words (Brown corpus)

 What is the probability that a random word from some
other text from the same distribution will be “Chinese”

 MLE estimate is 400/1000000 = .004
 This may be a bad estimate for some other corpus

 But it is the estimate that makes it most likely that
“Chinese” will occur 400 times in a million word corpus.



8/1/08                                          Speech and Language Processing - Jurafsky and Martin 26

Berkeley Restaurant Project
Sentences

 can you tell me about any good cantonese restaurants
close by

 mid priced thai food is what i’m looking for
 tell me about chez panisse
 can you give me a listing of the kinds of food that are

available
 i’m looking for a good place to eat breakfast
 when is caffe venezia open during the day
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Bigram Counts

 Out of 9222 sentences
 Eg. “I want” occurred 827 times
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Bigram Probabilities

 Divide bigram counts by prefix unigram
counts to get probabilities.
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Bigram Estimates of Sentence
Probabilities

 P(<s> I want english food </s>) =
  P(i|<s>)*

       P(want|I)*
         P(english|want)*
           P(food|english)*
             P(</s>|food)*
              =.000031
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Kinds of Knowledge

 P(english|want)  = .0011
 P(chinese|want) =  .0065
 P(to|want) = .66
 P(eat | to) = .28
 P(food | to) = 0
 P(want | spend) = 0
 P (i | <s>) = .25

 As crude as they are, N-gram probabilities
capture a range of interesting facts about
language.

World knowledge

Syntax

Discourse
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Shannon’s Method

 Assigning probabilities to sentences is all
well and good, but it’s not terribly
illuminating . A more interesting task is to
turn the model around and use it to
generate random sentences that are like
the sentences from which the model was
derived.

 Generally attributed to
   Claude Shannon.
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Shannon’s Method

 Sample a random bigram (<s>, w) according to its probability
 Now sample a random bigram (w, x) according to its probability

 Where the prefix w matches the suffix of the first.
 And so on until we randomly choose a (y, </s>)
 Then string the words together
 <s> I
           I want

       want to
              to eat
             eat Chinese

      Chinese food
                  food  </s>
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Shakespeare
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Shakespeare as a Corpus

 N=884,647 tokens, V=29,066
 Shakespeare produced 300,000 bigram types

out of V2= 844 million possible bigrams...
  So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)
 This is the biggest problem in language modeling;

we’ll come back to it.

 Quadrigrams are worse:   What's coming out
looks like Shakespeare because it is
Shakespeare
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The Wall Street Journal is Not
Shakespeare
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Evaluation

 How do we know if our models are any
good?
 And in particular, how do we know if one

model is better than another.
 Well Shannon’s game gives us an intuition.

 The generated texts from the higher order
models sure look better. That is, they sound
more like the text the model was obtained
from.

 But what does that mean? Can we make that
notion operational?
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Evaluation

 Standard method
 Train parameters of our model on a training set.
 Look at the models performance on some new data

 This is exactly what happens in the real world; we want to
know how our model performs on data we haven’t seen

 So use a test set. A dataset which is different than
our training set, but is drawn from the same source

 Then we need an evaluation metric to tell us how
well our model is doing on the test set.
 One such metric is  perplexity (to be introduced below)
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Unknown Words

 But once we start looking at test data,
we’ll run into words that we haven’t seen
before (pretty much regardless of how
much training data you have.

 With an Open Vocabulary task
 Create an unknown word token <UNK>
 Training of <UNK> probabilities

 Create a fixed lexicon L, of size V
 From a dictionary or
 A subset of terms from the training set

 At text normalization phase, any training word not in L changed to
<UNK>

 Now we count that like a normal word
 At test time

 Use UNK counts for any word not in training
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Perplexity

 Perplexity is the probability of
the test set (assigned by the
language model), normalized by
the number of words:

 Chain rule:

 For bigrams:

 Minimizing perplexity is the same as maximizing
probability
 The best language model is one that best

predicts an unseen test set
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Lower perplexity means a
better model

 Training 38 million words, test 1.5 million
words, WSJ
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Evaluating N-Gram Models

 Best evaluation for a language model
 Put model A into an application

 For example, a speech recognizer
 Evaluate the performance of the

application with model A
 Put model B into the application and

evaluate
 Compare performance of the application

with the two models
 Extrinsic evaluation
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Difficulty of extrinsic (in-vivo)
evaluation of  N-gram models
 Extrinsic evaluation

 This is really time-consuming
 Can take days to run an experiment

 So
 As a temporary solution, in order to run experiments
 To evaluate N-grams we often use an intrinsic

evaluation, an approximation called perplexity
 But perplexity is a poor approximation unless the test

data looks just like the training data
 So is generally only useful in pilot experiments

(generally is not sufficient to publish)
 But is helpful to think about.
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Zero Counts

 Back to Shakespeare
 Recall that Shakespeare produced 300,000 bigram

types out of V2= 844 million possible bigrams...
  So, 99.96% of the possible bigrams were never seen

(have zero entries in the table)
 Does that mean that any sentence that contains one

of those bigrams should have a probability of 0?
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Zero Counts
 Some of those zeros are really zeros...

 Things that really can’t or shouldn’t happen.
 On the other hand, some of them are just rare events.

 If the training corpus had been a little bigger they would have had a
count (probably a count of 1!).

 Zipf’s Law (long tail phenomenon):
 A small number of events occur with high frequency
 A large number of events occur with low frequency
 You can quickly collect statistics on the high frequency events
 You might have to wait an arbitrarily long time to get valid statistics

on low frequency events
 Result:

 Our estimates are sparse! We have no counts at all for the vast bulk
of things we want to estimate!

 Answer:
 Estimate the likelihood of unseen (zero count) N-grams!
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Laplace Smoothing

 Also called add-one smoothing
 Just add one to all the counts!
 Very simple

 MLE estimate:

 Laplace estimate:

 Reconstructed counts:
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Laplace-Smoothed Bigram
Counts
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Laplace-Smoothed Bigram
Probabilities
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Reconstituted Counts
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Big Change to the Counts!

 C(count to) went from 608 to 238!
 P(to|want) from .66 to .26!
 Discount d= c*/c

 d for “chinese food” =.10!!! A 10x reduction
 So in general, Laplace is a blunt instrument
 Could use more fine-grained method (add-k)

 But Laplace smoothing not used for N-grams, as we
have much better methods

 Despite its flaws Laplace (add-k) is however still used to
smooth other probabilistic models in NLP, especially
 For pilot studies
 in domains where the number of zeros isn’t so huge.
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Better Smoothing

 Intuition used by many smoothing
algorithms
 Good-Turing
 Kneser-Ney
 Witten-Bell

 Is to use the count of things we’ve seen
once to help estimate the count of things
we’ve never seen
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Good-Turing
Josh Goodman Intuition

 Imagine you are fishing
 There are 8 species: carp, perch, whitefish, trout,

salmon, eel, catfish, bass

 You have caught
 10 carp, 3 perch, 2 whitefish, 1 trout, 1 salmon, 1 eel

= 18 fish
 How likely is it that the next fish caught is from

a new species (one not seen in our previous
catch)?
 3/18

 Assuming so, how likely is it that next species is
trout?
 Must be less than 1/18

Slide adapted from Josh Goodman
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Good-Turing

 Notation: Nx is the frequency-of-frequency-x
 So N10=1

 Number of fish species seen 10 times is 1 (carp)

 N1=3
 Number of fish species seen 1 is 3 (trout, salmon, eel)

 To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1      p0 = N1/N

 All other estimates are adjusted (down) to give
probabilities for unseen

Slide from Josh Goodman
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Good-Turing Intuition

 Notation: Nx is the frequency-of-frequency-x
 So N10=1, N1=3, etc

 To estimate total number of unseen species
 Use number of species (words) we’ve seen once
 c0

* =c1      p0 = N1/N p0=N1/N=3/18

 All other estimates are adjusted (down) to give
probabilities for unseen

P(eel) = c*(1) = (1+1) 1/ 3 = 2/3

Slide from Josh Goodman



8/1/08                                          Speech and Language Processing - Jurafsky and Martin 54

GT Fish Example
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Bigram Frequencies of
Frequencies and
GT Re-estimates
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Complications

 In practice, assume large counts (c>k for some k) are reliable:

 That complicates c*, making it:

 Also: we assume singleton counts c=1 are unreliable, so treat N-
grams with count of 1 as if they were count=0

 Also, need the Nk to be non-zero, so we need to smooth
(interpolate) the Nk counts before computing c* from them
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Backoff and Interpolation

 Another really useful source of knowledge
 If we are estimating:

 trigram p(z|x,y)
 but count(xyz) is zero

 Use info from:
 Bigram p(z|y)

 Or even:
 Unigram p(z)

 How to combine this trigram, bigram,
unigram info in a valid fashion?
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Backoff Vs. Interpolation

 Backoff: use trigram if you have it,
otherwise bigram, otherwise unigram

 Interpolation: mix all three
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Interpolation

 Simple interpolation

 Lambdas conditional on context:
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How to Set the Lambdas?

 Use a held-out, or development, corpus
 Choose lambdas which maximize the

probability of some held-out data
 I.e. fix the N-gram probabilities
 Then search for lambda values
 That when plugged into previous equation
 Give largest probability for held-out set
 Can use EM to do this search
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Katz Backoff
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Why discounts P* and alpha?

 MLE probabilities sum to 1

 So if we used MLE probabilities but backed off to
lower order model when MLE prob is zero

 We would be adding extra probability mass
 And total probability would be greater than 1
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GT Smoothed Bigram
Probabilities
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Intuition of
Backoff+Discounting

 How much probability to assign to all the
zero trigrams?
 Use GT or other discounting algorithm to tell

us

 How to divide that probability mass among
different contexts?
 Use the N-1 gram estimates to tell us

 What do we do for the unigram words not
seen in training?
 Out Of Vocabulary = OOV words
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OOV words: <UNK> word

 Out Of Vocabulary = OOV words
 We don’t use GT smoothing for these

 Because GT assumes we know the number of unseen events

 Instead: create an unknown word token <UNK>
 Training of <UNK> probabilities

 Create a fixed lexicon L of size V
 At text normalization phase, any training word not in L changed to

<UNK>
 Now we train its probabilities like a normal word

 At decoding time
 If text input: Use UNK probabilities for any word not in training
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Practical Issues

 We do everything in log space
 Avoid underflow
 (also adding is faster than multiplying)
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Google N-Gram Release
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Google N-Gram Release

 serve as the incoming 92
 serve as the incubator 99
 serve as the independent 794
 serve as the index 223
 serve as the indication 72
 serve as the indicator 120
 serve as the indicators 45
 serve as the indispensable 111
 serve as the indispensible 40
 serve as the individual 234
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Google Caveat

 Remember the lesson about test sets and
training sets...  Test sets should be similar
to the training set (drawn from the same
distribution) for the probabilities to be
meaningful.

 So... The Google corpus is fine if your
application deals with arbitrary English
text on the Web.

 If not then a smaller domain specific
corpus is likely to yield better results.


