Chapter Three Exercise Answers

http://www-rohan.sdsu.edu/~gawron/semantics

Jean Mark Gawron

San Diego State University, Department of Linguistics

2010-08-19
Introduction
1. Introduction
Question 1

a. Every possum was brown. \(\forall x \ [\text{possum}(x) \rightarrow \text{brown}(x)] \)

b. John ate a sandwich. \(\exists x \ [\text{sandwich}(x) \& \text{eat}(j, x)] \)

c. A young woman spoke \(\exists x \ [\text{woman}(x) \& \text{young}(x) \& \text{speak}(x)] \)

d. Kerry filled all the gaps. \(\forall x \ [\text{gap}(x) \rightarrow \text{fill}(k, x)] \)

e. Every guest thanked Jones. \(\forall x \ [\text{guest}(x) \rightarrow \text{thank}(x, j)] \)
a. There was a black hat on the bed.
 \[\exists x \left[\text{hat}(x) \& \text{black}(x) \& \text{on}(x, \text{the bed}) \right] \]

 = A black hat was on the bed.

b. All roads lead to Rome
 \[\forall x \left[\text{road}(x) \rightarrow \text{lead-to}(x, r) \right] \]

c. Utopia welcomes all travelers from Spain.
 \[\forall x \left[(\text{traveler}(x) \& \text{from}(x, s)) \rightarrow \text{welcome}(U, x) \right] \]

 = Clive was murdered.

d. Clive got murdered.
 \[\exists x \left[\text{murder}(x, c) \right] \]

 = Someone murdered Clive.

e. Jones read every book in the library.
 \[\forall x \left[(\text{book}(x) \& \text{in}(x, \text{library})) \rightarrow \text{read}(j, x) \right] \]
Breaking the sentence into two pieces

C. gave $[\forall x \text{ child}(x) \rightarrow \exists z [\text{give}(c, z, x)]]$

\rightarrow

$[\forall x \text{ child}(x) \rightarrow \exists x [\text{give}(c, z, x)]]$

either a biscuit or $\exists z [\text{biscuit}(z) \lor \text{Bc}(z)]$

a batman comic

Clive gave every $\forall x [\text{child}(x) \rightarrow \text{give}(c, z, x)]$

child z

1. $\exists z [\text{biscuit}(z) \lor \text{Bc}(z)] \land \forall x [\text{child}(x) \rightarrow \text{give}(c, z, x)]$

2. $\forall x [\text{child}(x) \rightarrow \exists x [\text{biscuit}(x) \lor \text{Bc}(z)] \land \text{give}(c, z, x)]]$
There’s no biz like show biz!

\[\sim \exists x \left[\text{business}(x) \& \text{like}(x, \text{sb}) \right] \]

Or if you think show business is a business and you think show business is like itself (and you don’t think the semantics should be contradictory), then you think the sentence means something like *There’s no business like show business — except show business.*

\[\sim \exists x \left[\text{business}(x) \& x \neq \text{sb} \& \text{like}(x, \text{sb}) \right] \]