
Rules Scalar case 2D cases Extended example

Broadcasting

Jean Mark Gawron

Linguistics 572
San Diego State University

September 27, 2020

Jean Mark Gawron Linguistics 572San Diego State University 1 / 18



Rules Scalar case 2D cases Extended example

Dimension compatibility

When operating on two arrays, NumPy compares their shapes
element-wise. It starts with the trailing dimensions and works its way
forward. Two dimensions are compatible when

1 they are equal; or
2 one of them is 1.

Jean Mark Gawron Linguistics 572San Diego State University 2 / 18



Rules Scalar case 2D cases Extended example

Arrays of different dimensionality

All dimensions of lower dimensionality array match trailing dimensions of
the other. Scale the 3 color layers in an RGB image by different amounts:

Image (3d array): 256 x 256 x 3
Scales (1d array): 3

[
1. .9 1.4

]
Result (3d array): 256 x 256 x 3

Jean Mark Gawron Linguistics 572San Diego State University 3 / 18



Rules Scalar case 2D cases Extended example

Trailing dimensions don’t match

>>> import numpy as np
>>> A, B = np.arange(20).reshape((5,4)),np.arange(4)
>>> Result1 = A * B
>>> C = np.arange(5)
>>> Result2 = A * C
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (5,4) (5,)

Jean Mark Gawron Linguistics 572San Diego State University 4 / 18



Rules Scalar case 2D cases Extended example

Two mismatched 1D arrays

ValueError: operands could not be broadcast together

>>> A1d, B1d = np.arange(4),np.arange(5)
>>> A1d + B1d
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (4,) (5,)

Jean Mark Gawron Linguistics 572San Diego State University 5 / 18



Rules Scalar case 2D cases Extended example

Examples

A 5 x 4
B 4
Result 5 x 4

A 5 x 4
B 1 Scalar!
Result 5 x 4

A 15 x 3 x 5
B 15 x 1 x 5
Result 15 x 3 x 5

A 15 x 3 x 5
B 3 x 5
Result 15 x 3 x 5

Jean Mark Gawron Linguistics 572San Diego State University 6 / 18



Rules Scalar case 2D cases Extended example

Multiply by 5

5 +

[
1 2 3 4
5 6 7 8

]
⇓

[
5 5 5 5
5 5 5 5

]
+

[
1 2 3 4
5 6 7 8

]

Jean Mark Gawron Linguistics 572San Diego State University 7 / 18



Rules Scalar case 2D cases Extended example

Two Matched 2D arrays

>>> a = np.arange(4)[:,np.newaxis]
>>> b = np.arange(5)[np.newaxis,:]
>>> print(a,a.shape)
[[0]
[1]
[2]
[3]] (4, 1)

>>> print(b,b.shape)
[[0 1 2 3 4]] (1, 5)
>>> print((a+b).shape)
(4, 5)

Jean Mark Gawron Linguistics 572San Diego State University 8 / 18



Rules Scalar case 2D cases Extended example

“Outer” addition

a is 4x1, b is 1x5.

>>> print(a + b)
[[0 1 2 3 4]
[1 2 3 4 5]
[2 3 4 5 6]
[3 4 5 6 7]]

r,c = a.shape[0],b.shape[1]
M = np.zeros((r,c),dtype=int)
for i in range(r):

for j in range(c):
M[i,j] = a[i,0] + b[0,j]

Jean Mark Gawron Linguistics 572San Diego State University 9 / 18



Rules Scalar case 2D cases Extended example

Broadcasting: size-one dimensions copied

4 x 1



[
0
]

[
1
]

[
2
]

[
3
]


=⇒



[
0 0 0 0 0

]
[
1 1 1 1 1

]
[
2 2 2 2 2

]
[
3 3 3 3 3

]



1 x 5

[[
0 1 2 3 4

]]
w�



[
0 1 2 3 4

]
[
0 1 2 3 4

]
[
0 1 2 3 4

]
[
0 1 2 3 4

]


Jean Mark Gawron Linguistics 572San Diego State University 10 / 18



Rules Scalar case 2D cases Extended example

Shapes?

>>> import numpy as np
>>> a1d, b1d = np.arange(4),np.arange(5)
>>> a, b = a1d.reshape((4,1)), b1d.reshape((5,1))

>>> a1d_p_b = a1d + b
>>> a_p_b1d = a + b1d

Jean Mark Gawron Linguistics 572San Diego State University 11 / 18



Rules Scalar case 2D cases Extended example

Values

>>> print(a.shape, b.shape)
(4, 1) (5, 1)
>>> a1d_p_b
array([[0, 1, 2, 3],

[1, 2, 3, 4],
[2, 3, 4, 5],
[3, 4, 5, 6],
[4, 5, 6, 7]])

>>> a_p_b1d
array([[0, 1, 2, 3, 4],

[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6],
[3, 4, 5, 6, 7]])

Jean Mark Gawron Linguistics 572San Diego State University 12 / 18



Rules Scalar case 2D cases Extended example

K Nearest Neighbors

1 To illustrate the power of broadcasting with a somewhat more
practical example, we’ll compute the K Nearest Neighbors (KNN)
for a set of points, where is an integer.

2 Typically the KNN problem is solved for points in a high dimensional
space; each point represents a sample; each coordinate represents a
value for some numerical feature of the sample. For presentational
purposes we’ll solve KNN for a small set of 2D points.

3 The KNN problem is important in a number of applications. For
example, in a machine learning context, one strategy for classifying
point X is to find the KNNs of X from among a set of points whose
classes are known, and let the KNNs “vote” on the class of X.

Jean Mark Gawron Linguistics 572San Diego State University 13 / 18



Rules Scalar case 2D cases Extended example

VanderPlas’s K-Nearest Neighbor calculation

>>> Y = (np.array([np.arange(5),np.arange(5,0,-1)])).T
>>> Y
array([[0, 5],

[1, 4],
[2, 3],
[3, 2],
[4, 1]])

>>> Y[:, np.newaxis, :].shape, Y[np.newaxis, :, :].shape
((5, 1, 2), (1, 5, 2))
>>> deltas = Y[:,np.newaxis,:] - Y[np.newaxis,:,:] # (5, 5, 2)
>>> deltas[0,:,1] # Y-coord diffs for Pt 0
array([0, 1, 2, 3, 4])

Jean Mark Gawron Linguistics 572San Diego State University 14 / 18



Rules Scalar case 2D cases Extended example

The points

dist(Y[i ],Y[j ])2 = (deltas[i ][j ][0])2 + (deltas[i ][j ][1])2

Jean Mark Gawron Linguistics 572San Diego State University 15 / 18



Rules Scalar case 2D cases Extended example

Distance calc completed (looplessly)

>>> dists = np.sum(deltas**2, axis=2) # x**2 lyr + y**2 lyr
>>> print(dists) # dists[i,j] = sqd dist from i to j
[[ 0 2 8 18 32]
[ 2 0 2 8 18]
[ 8 2 0 2 8]
[18 8 2 0 2]
[32 18 8 2 0]]

>>> nearest = np.argsort(dists, axis=1)
>>> print(nearest) # nearest[i,:] = sorted nbrs of point i
[[0 1 2 3 4]
[1 0 2 3 4]
[2 1 3 0 4]
[3 2 4 1 0]
[4 3 2 1 0]]

Jean Mark Gawron Linguistics 572San Diego State University 16 / 18



Rules Scalar case 2D cases Extended example

Finding the K nearest (k = 2)

Less work: Partition the set of points into the top K + 1 (k = 2) and all
the rest:

>>> nearest_k = np.argpartition(dists, kth = 3, axis=1)
>>> print(nearest_k) # nearest[i,:k] = unsorted K nearest nbrs of point i
[[1 0 2 3 4]
[1 2 0 3 4]
[3 2 1 0 4]
[3 2 4 1 0]
[3 4 2 1 0]]

Jean Mark Gawron Linguistics 572San Diego State University 17 / 18



Rules Scalar case 2D cases Extended example

Takeaways

1 Basic ‘numpy‘ op: elementwise arithmetic between ‘ndarray‘s of the
same shape.

2 Broadcasting licenses stretching operations on dimensions of size 1, or
lower dimensionality arrays when “trailing” dimensions match.

3 The broadcasting operation can be used to achieve the effect of a
loop, performing a single operation on all the elements. To achieve
this we sometimes increase the dimensionality of the data (‘:newaxis‘].

4 Complementing broadcasting (in the KNN example):
U-functions (universal functions) [‘deltas**2‘]
Aggregation operations [‘np.sum(deltas**2, axis=2)‘]

Jean Mark Gawron Linguistics 572San Diego State University 18 / 18


	Rules
	Scalar case
	2D cases
	Extended example

