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Abstract

A Probabilistic Theory of Implicature Calculation

1 Introduction: Bayes’ Rule
Based on the dependencies in 1, we have a joint distribution P(w, s | a), which
can be unpacked using teh chain rule as in Sections 1.1 and 1.2.

1.1 Speaker probability
We can unpack P(w, s | a) using a speaker-based probability, the probability of
words w given the state of the world s and the common ground a.

P(w, s | a) = Ps(w | s, a) · P(s | a)

1.2 Listener probability
Or we can unpack P(w, s | a) using a listener-based probability, the probability
of state s given the words w and the common ground a.

P(w, s | a) = Pl(s | w, a) · P(w | a)

1.3 The Rule
Speaker: P(w, s | a) = Ps(w | s, a) · P(s | a)

Listener: P(w, s | a) = Pl(s | w, a) · P(w | a)

Combined Pl(s | w, a) · P(w | a) = Ps(w | s, a) · P(s | a)

Pl(s | w, a) = (Ps(w | s, a) · P(s | a))/P(w | a)

Pl(s | w, a) ∝ Ps(w | s, a) · P(s | a)

Listener Strategy: Infer the state that maximizes the probability of speaker’s
description Ps(w | s, a) times the probability of what is being described Ps(s |
a).
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Speaker Listener

Figure 1: Communication: w = words, s = state (of the world), a =
(mutually) accessible info

2 Big Picture: Baker et al. (2009), Franke et al
(2016)

Baker et al. (2009) discuss a Bayesian approach to action understanding
that is the direct forerunner of the Bayesian approach to pragmatics of Franke
and Jäger (2016). We briefly describe Baker et al.

2.1 Plan understanding: Inverse planning
Plan understanding: Infer the goals of an agent based on their actions. Side
effect: Will affect your probability distribution for the agent’s future actions.

A simplified version of Equation (2), removing the fact that we’re describing
plans (sequences of states s and environments w). The left hand side describes
the probability of a goal given a state and an environment:

P(g | s, w) ∝ P(g | w)P(s | g, w)

Bayesian rule again. Choose the g that maximizes the product on the right. We
need an operationalizble way of estimating P(s | g, w). This comes via equation
(3), soimplified again.

P(s | g, w) =
∑
a∈A

P(a | s, g, w)

In the experiment inspired by Gergely et al. (1995) goals are endpoints and
way points in the paths taken by the sprites. Actions are paths taken to a
waypoint. The model is modified to deal with sequences.

Simple v. complex goals: One condition exposed subjects to sprites that took
curved paths only when there was an obstacle, and then a minimally curvbed
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Figure 2: Levels of Explanation (Franke et al. 2016).

path. (simple) The other condition exposed subjects to sprites that naturally
took curved paths even with no obstacles (complex). They were then asked to
assess the probability oif test paths, one straight one curved.

2.2 Franke et al (2016)
We refer to the discussion of levels of explanation in Franke and Jäger (2016).
See Figure 2.
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3 Carpet Game

3.1 Preliminaries
First some facts:

Utilities Priors Orientation

US :


ts1 0

ts2 20

ts3 40

 Pl :


ts1 .9

ts2 .09

ts3 .01

 ⇓ Increasingly desires to buy carpet

UL :

[
tl1 30

tl2 10

]
Ps :

[
tl1 .9

tl2 .1

]
⇓ Increasingly eager to sell carpet

Each utility function give us a value for the carpet, which we call Vs for S [the
buyer] and Vl for L [the seller]. They represent different facts. Vs is the highest
price S is willing to pay, and it varies with her state of mind. Vl is the lowest
price L will accept, and it also varies. Each Prior represents a player’s view
of the opposing player’s mind set. Thus Plis L (the seller)’s estimate of how
eager S is to buy the carpet, which is rather pessimistic, so as to make our story
go.

Expected values for Vs and Vl, based on the player’s priors.

E(Vs) = Pl(t
s
1) ·US(ts1) + Pl(t

s
2) ·US(ts2) + Pl(t

s
3) ·US(ts3)

= .9 · 0 + .09 · 20 + .01 · 40

= 2.2

E(Vl) = Ps(t
l
1) ·UL(tl1) + Ps(t

l
2) ·UL(tl2)

= .9 · 30 + .1 · 10

= 28

Note: E(Vl) 6≤ E(Vs), so we’re not conforming to the basic picture in which
there is a price on which S and L can agree:

E(Vl)_____Price____E(Vs)

3.2 Why Expected Values?
Let’s assume for the sake of argument that there is a fact of the matter, a
lowest price L will agree to and a highest price S will pay. Why do we compute
the expected values of E(Vl) and E(Vs) rather than just using those actual
values? Our assumption is that L does not know Vs and S does not know Vl.
We use the expected values to reason about their best strategies given this state
of uncertainty. Moreover, even though L does know VL, she uses E(VL) to
reason about S’s best strategies.
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Here’s an example. Based on this belief state for S and L, L’s best strategy
in F&J’s Figure 5 is to say nothing. Why? Because whether L offers the high
price or the low price, S’s best option is to reject. S’s payoff for an accept on
the Low Branch is -13.8; S’s payoff for an accept on the High Branch is -33.8.
In both cases S’s payoff for a reject is better (-1).

3.3 Updating the prior
But here is the thing. We have the power with language to change other people’s
belief states. The sentences in F&J’s (9), repeated here, represent S’s options
for trying to change Pl, L’s prior distribution over S’s degree of interest. Note
that s1 and s2 are somewhat indirect as regards the question of whether S wants
to buy, while s3 is direct.

(9) s1 No This rug has somewhat faded colors, but the pattern is kind of nice.
s2 No This is a beautiful carpet.
s3 Yes I have decided to buy this carpet.

Note that they represent an increasing degree of interest in buying the carpet.
We’ll assume that L is naive, and does not consider the possibility of being
manipulated (somewhat against the stereotype for carpet retailers),

F&J’s Table 3, reproduced here. represents some made-up numbers for how
the utterance options (s1, s2, and s3) change Pl. The magnitudes are contrived
so as to make something happen, but the relaive sizes encode simple intuitions:

Expressing increasing
S desire for carpet

Ps(t
s
j | si) :

⇒
s1 s2 s3

ts1 9x x 0

ts2 4x 30x 20s ⇓ Actual S desire
ts3 x 150x 500x

The idea here is that an utterance of one of these three sentences by S can
influence L’s prior distribution over S’s state, Pl, and that in turn can change
all the

3.4 Bayes’ Rule Explains F&J’s Table 4
Table 4 is gotten from table 3 by applying Bayes’ Rule. The version of Bayes’
Rule we’ll need is the same as the version above, only variables have to be
relabeled. Here’s the relabeled version:

Pl(t
s
1 | s1) ∝ Ps(s1 | tsi) · Pl(t

s
i)
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Ps(s1 | tsi) · Pl(t
s
i) Pl(t

s
i | s1)

Pl(t
s
1 | s1) ∝ 9x · .90 8.1x .956

Pl(t
s
2 | s1) ∝ 4x · .09 .36x .042

Pl(t
s
3 | s1) ∝ 1x · .01 .01x .001

Total 8.47x ∼ 1.000

Bayesian update: P(tsi) before and after si

Prior Posteriors

P(tsi) P(tsi | s1) P(ts2 | s2) P(ts3 | s3)

ts1 .90 .956 .18 .00
ts2 .09 .043 .53 .29
ts3 .01 .001 .26 .74

p. 31 Table 4, p. 33

Of course, updating a prior will have an immediat effect of Vs. Let’s assume
S says s2 and recompute Vs

E(Vs) = Pl(t
s
1 | s1) ·US(ts1) + Pl(t

s
2 | s1) ·US(ts2) + Pl(t

s
3 | s1) ·US(ts3)

= .18 · 0 + .53 · 20 + .26 · 40

= 22.2

The expected value of Vs was 2.2, based on Pl, which represents L as having a
rather pessimistic view of Vs. Because of s2, it has now risen to 22.2. According
to the game analysis in Figure 4, S’s payoff for an accept in the low branch
now becomes positive. In fact, numerous changes occur on both the low and
high branches with each si. The following table summarizes the payoff situation
(see also F&J’s Figure 6):

Expected S Payoffs: Offer −Vs

s1 s2 s3

Offer Vs Payoff Vs Payoff Vs Payoff

15 0.8 −14.2 22.2 7.2 34.8 19.8

35 0.8 −34.2 22.2 −12.8 34.8 −.2

If L offers the low price $15, S will accept after s2, because the payoff of 7.2
is better than the payoff of -1 with reject. Of course whether L will do this
depends on the actual Vl, because L’s payoff on the low price is −Vl + 15, so
he’s only going to name the low price if he’s in state tl2, where he’s quite eager
to sell. F&J’s Figure 7 lays out the whole picture for L’s best strategy, given
each of the possible utterances and each possible state of L.
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F&J’s Figure 7 makes it clear that S’s expectations of success depend on L’s
state. We can compute expected values for S’s strategies using Ps

Ps :

[
tl1 .9

tl2 .1

]

and the best response analysis in F&J’s Figure 7, which tell us what a naive
rational L will do in each of his 2 possible states.

Figure 8 provides S’s expected payoff for the 3 possible values Vs. Let’s
take as an example the third branch, ts3, in which S wants the carpet the most,
Vs = 40. Each of L’s choices pays off S based on the rule given in F&J’s Figure
4:

L’s Strategy Rule In ts3
Low Vs − 15 25

High Vs − 35 5

No offer 0 0

With each possible utterance si and each tli , the optimal L strategies come
from F&J’s Fig 7.

s1 Ps(t
s
1) · [no offer] + Ps(t

s
2) · [no offer]

.9 · 0 + .1 · 0
0

s2 Ps(t
s
1) · [no offer] + Ps(t

s
2) · [Low]

.9 · 0 + .1 · 25

2.5

s3 Ps(t
s
1) · [High] + Ps(t

s
2) · [High]

.9 · 5 + .1 · 5
5

On this branch clearly s3 clearly yields the highest payoff. Any other utterance
runs too much risk of a no offer.

The other branches in Figure 8 are computed in a similar way. What should
S say? It clearly depends on S’s state. Each branch of Figure 8 gives a different
answer.

tsi Vs Best strategy

ts1 0 s1

ts2 20 s2

ts3 40 s3

Now s1, s2, s2 So the more S values the carpet, the more desire she should
express for it.

This story has several lessons:
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Figure 3: Reference Games

1. Variability of what a message signals

2. Role of messages in creating more favorable posterior

3. Variability of what a speaker should choose to say based on speaker’s state
tsi , and their assessment of listener’s state (Ps).

4. Indirectness explained: They discuss an alternative starting prior they call
the eagerness assumption, on which S assumes L is much more eager
to sell (F&J’s Figure 9), on which it pays for even a strongly interested
buyer to be indirect (use s2 in favor of the direct s3).

4 Reference Games
Pliteral:

property
referent square green circle blue

Gr. Sq. 1.0 .5 0 0
Gr. Circ. 0 .5 .5 0
Bl. Circl 0 0 .5 1

Read this as
Pliteral(Gr. Sq. | green) = .5

In general they write Pliteral(r | p), r for referent, p for property.
Add in a speaker preference function f :

EUspeaker(refer to r, choose p, paraneter f) = Pliteral(r | p) + f(p)

This number is no longer a probability.
Define a probability function based on EUspeaker) using softmax:

Pprod(p | r;λ, f) = exp(λ · EUspeaker(r, p; f))∑
p′ exp(λ · EUspeaker(r, p′; f))

Softmax idea:
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Table 1: Scalar some

1. A probability function guided by a utility function

2. The optimal choice is the most probable

3. Suboptimal choices are possible. A suboptimal choice c is more probable
than any choice with less utility.

Bottom line:

1. Fix parameters λ and x as the choice that makes the observed dat a most
probable

2. Different parameters for productiona dn comprehensiopn experiments

3. Great fit

4. Toy example demonstrating only that probabilistic pragmatics provides
an empirically testable framework modeling production and comprehnsion
choices

5 Gradience
1. Scalar implicatures are variable:Differences between some/all and big/enormous

or attractive/stunning

2. Patterns of variation

9



• Given 10 circles, told circles are white, asked how many?
• 4 or 5 very common, 2 less likely than 6.
• Likert Scale judgments of how well sentences describe a situation.

Vary | A ∩ B |.
• The notion prototype seems more helpful.

6 Wonky Worlds
Degen et al. (2015) ? deals with two important predictions of the RSA model.

(1) a. Some of the marbles sank.

b. All the marbles sank.

c. Some of the cars sank.

d. All of the cars sank.

1. What is ΘX? Or Θmarble in this case?

2. Suppose ΘX is not extreme, is P(1b) high or low after an utterance of
(1a)?

3. As ΘX approaches 1, what happens to P(1b) [according to the RSA
model]?

4. As ΘX approaches 1, what happens to P(1b) [in experiments with human
subjects]?

5. For moderate to high Θcar and a high number of cars, is P(1d) substan-
tially different after an utterance of P(1c) [according to the RSA model]?
[according to human subjects]?

6. What does the wonky worlds parameter do?

7. Moral of these experiments: What should researchers think about when
it comes to using “odd” items in semantics and pargmatics experiments?

7 Potts et al. (2016)

7.1 Exhaustification
Exhaustification of φ is defined versus some set of alternatives. Exhaust(φ) is φ
conjoined with the negation of all the alternatives that are stronger tha φ.

For example the exhaustification of ∃xφ(x) in a context where ∀xφ(x) is
the only alternative will be equivalent to

∃xφ(x) & ∼ ∀xφ(x)

because
∀xφ(x)⇒ ∃xφ(x)
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Figure 4: Exhaustification (Potts et al 2016)
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