Minimum Edit Distance: Second Look

Jean Mark Gawron

Linguistics 522 San Diego State University

2018 FEB

Jean Mark Gawron

Linguistics 522San Diego State University

3

・ロン ・回と ・ヨン ・ ヨン

Outline

Jean Mark Gawron

Linguistics 5225an Diego State University

leda deal

Sources of an alignment

target **e** aligned with 0: deletion

de le `SUB sul de d le dus sub ~® dns ⊗– ins - del ins de/ de, ins l d Ø `ø ۱ d de d Ø Ø Ø le L L Ø

< 17 >

Jean Mark Gawron

э

Edit problems and alignments: The computational graph

- Each node is an editdistance problem (a state in the computational graph).
- b. **Paths** from a node to the leaves are alignments (solutions).
- c. Same state crops up on different paths.
- d. Naive traversal from root to leaves solves same problem multiple times. (Order 3^{m+n})

The big picture

- Computational graph, drawn as tree, is actually a DAG (Directed Acyclic Graph), because the same problem recurs in multiple places.
- So the Minimal Edit Distance algorithm is solving the problem of finding the shortest distance through a weighted graph. (Order $m \times n$)
- A special case of what we will call the Viterbi algorithm later in the course.