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Abstract

We investigate the problem of improving performance in distributional word similarity

systems trained on sparse data, focusing on a family of similarity functions we call Dice

family functions (Dice 1945), including the similarity function introduced in Lin (1998),

and Curran (2004), as well as a generalized version of Dice Coefficient used in data min-

ing applications (Strehl 2000:55). We propose a generalization of the Dice-family func-

tions which uses a weight parameter α to make the similarity functions asymmetric.

We show that this generalized family of functions (α systems) all belong to the class

of asymmetric models first proposed in Tversky 1977, and in a multi-task evaluation of

10 word similarity systems, we show that α systems have the best performance across

word ranks. In particular, we show that α-parameterization substantially improves the

correlations of all Dice-family functions with human judgements on three words sets, in-
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cluding the Miller-Charles/Rubenstein Goodenough word set (Miller and Charles 1991,

Rubenstein and Goodenough 1965).

1 Introduction

The Distributional Hypothesis (DH) states that words with similar distributions

have similar meanings. With varying degrees of explicitness, the hypothesis ap-

peared in a number of different works in the 50’s, survived a period of relative

obscurity, and has more recently been revived in the fields of cognitive psychology,

in works like Miller and Charles (1991), and in computational linguistics, where it

has been applied by a host of researchers with great success.

The following quotations capture the spirit of the DH:

The meaning of a word can be characterized by its distribution. (Nida 1975:167)

Strong Contextual Hypothesis: Two words are semantically similar to the extent that

their contextual representations are similar. (Miller and Charles 1991:8)

To transform ideas like these into computationally practical systems, seminal

works like Schütze (1993), Dagan et al. (1997), Lee (1997), Lin (1998), and Dagan

et al. (1999), explored various definitions of distribution and alternative similarity

functions. What emerged was a family of vector space models of word meaning

referred to as the “word as vector” paradigm.

One of the less commonly explored consequences of the DH is that changes of

meaning will be reflected in changes of word distribution. Thus, for example, the

subtle shifts in word meaning observable in the ideologically charged writings of
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groups organized for collective political action could in principle be observed in

shifts in the distributions of those words. Works like Gawron (2011) make it clear

that groups organized for collective action do create a particular vocabulary ex-

pressive of their collective identity, and because that vocabulary sometimes involves

general purpose vocabulary co-opted for group-specific senses (the word white as

used by white militant groups), the property of interest is not the frequency of the

word itself, but its usage pattern – for example, high co-occurrence frequencies of

white modifying people, men, and identity, high frequencies of usage as a plural

noun. Building up from there, we might hope to construct word hierarchies indicat-

ing word association patterns characteristic of the group, again relying on patterns

of distribution among the words.

Interest in such an application places two important constraints on a word simi-

larity system. First, it must be distributional; that is, it characterizes word meaning

by patterns of usage. For example, any approach based on a domain independent

word graph such as WordNet is beside the point. Second, it cannot rely on the

assumption that terabytes of data will be available. Groups organized for collective

action often produce limited amounts of text; for this application, distributional

systems must be able to squeeze the maximum amount of semantic information out

of such limited datasets.

We are thus interested in the question of how similarity systems degrade when

they move from modeling words for which we have representative data to modeling

words for which the data is sparse, and when they fail altogether.

Consistent with our requirement that the models be usage-based, the word vector
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man nmod-the nmod-tall nmod-small −sbj-liked −obj-liked

2 1 1 1 1

liked sbj-man obj-man

1 1

Table 1. Dependency feature counts extracted for man and liked based on the

single sentence The tall man liked the small man.

models in our study are all dependency-based models, models which build the

word vector for a word w from statistics on all the modification relations w enters

into in a parsed corpus. The counts for the dependency occurrences of the words

man and liked in the sentence The tall man liked the small man are illustrated

in Table 1. The word man enters into three parent relationships in this sentence

(it is modified by three distinct word types) and two child relationships; its two

tokens enter into two distinct modifying relations (signaled with a relation name

that begins with −).

Thus, the appropriate statistic for measuring the amount of information we have

on a word is its dependency count, the total number of parent/child relations

the word enters into in the parsed corpus.

To illustrate the data sparsity issues involved, we will look at an example drawn

from the 10,000 most frequent nouns in the British National Corpus, or BNC

(Burnard 1995). If the word vectors are built using 50 million words, about half

the BNC, the 10,000th most frequent noun (vagrant) has a dependency count of
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3. This is well below the point at which the word model can be used to make re-

liable similarity discriminations. However, consider dinghy, the noun at noun rank

6200.1, which has a dependency count of 215, distributed among 113 features. Of

those 215 dependencies, many are semantically useless high count words like the

(occurs 38 times) and a (occurs 22 times); 88 of the 113 features have count 1, and

most of the semantically telling words can be found in this set, including words

like inflating, maneuvering, fiberglass, and carry. This hapax list makes it very clear

how low count events can still be informative despite inevitable noise: A word that

shares a significant subset of the statistically interesting low count dependencies

with our target word is probably related. Under such conditions, almost all events

of interest are low count events. Ideally, we should still be able to make some useful

discriminations with this amount of information.

An important subcase of the general problem is the issue of how to compare

low frequency words with high frequency words. Suppose we now want to measure

the semantic similarity of boat, rank 682, 1057 nonzero features, with dinghy, rank

6200, 113 nonzero features. At the level of the vector representations we are using,

these just look like events of very different dimensionality. The traditional recourse

for comparing events of different scales is normalization. Normalization can be of

two kinds. We can apply a transformation of the data that maps all events onto

a single scale. Euclidean normalization does this. The risk of this strategy is the

distortion of important relations in the data. Or we can perform a more costly nor-

malization by pairs whenever we compare two events. Dice family normalization,

the kind used by the Dice Coefficient (Dice 1945), is of this sort. We study both
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kinds of normalization. As we shall see, the normalized functions we are studying

do not necessarily do sensible things when comparing words of very different fre-

quency. For example, cosine is fairly ill-behaved. And a Dice-normalizing function

like dice†(Curran 2004) turns out to be a little better, but still not very good.

In this paper, we propose a novel approach to the problem of comparing represen-

tations of very different dimensionality; broadly speaking, we generalize Dice-family

normalization with a weighting parameter α. This allows one to balance the differ-

ences in descriptive information between low and high dimensionality vectors. This

approach necessarily results in an asymmetric similarity measure.

The idea of an asymmetric similarity measure seems to have originated with

Tversky (1977). Tversky’s main motivation for investigating asymmetry was to

define a similarity model consistent with the results of a number of psychologi-

cal experiments which demonstrated asymmetries in human similarity judgments.

What Tversky proposes is actually a schema for a class of models, including as a

special case a class of symmetric models. In Section 2, we demonstrate a previously

unnoticed result, that Tversky models include all the Dice family models as a spe-

cial case, including important functions like Dice coefficient, Lin’s 1998 function,

and the dice† function studied in Curran (2004). It follows from Tversky’s for-

mulation that these functions have asymmetric versions that have previously been

unstudied. We will show that the asymmetric versions of these functions improve on

the performance of symmetric versions in a variety of tasks. We further show that

the greatest improvement is always due to improvement in making comparisons
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between vectors of very different dimensionality, that is, in comparing less frequent

words with frequent words.

With one exception, the set of tasks we will use to demonstrate the utility of

the asymmetric Dice family systems is drawn from a set of benchmarks tasks used

in previous work on asymmetric similarity measures, including Lee (1999), Lee

(2001), Weeds and Weir (2005), and Jimenez et al. (2012). This work has focused

on showing that there is a class of tasks for which an asymmetric similarity measure

is particularly well-suited. Here we show the same improvements on some of the

same tasks, but we focus on establishing a new result: One of the reasons asymme-

try works when it works is that the best normalization strategy when computing

the similarities of high dimensionality and low dimensionality representations is

asymmetric. Thus, for example, in the nearest neighbor task which evaluates the

quality of nearest neighbors found words at a variety of test word frequencies, we

show that asymmetric systems are best with very high and very low frequency test

words, when high-low dimensionality comparisons are most likely to occur.

The importance of asymmetry in facilitating high/low dimensionality compar-

isons is actually implicit in some of Tversky’s results (we discuss this in more detail

in Section 2). Thus, the same kind of asymmetric system that works well on the

benchmark asymmetric tasks in principle ought to work well at capturing human

similarity judgments. We demonstrate this is the case by applying our Dice-family

systems to several of the word-similarity data sets popular in the literature, includ-

ing the Miller/Charles set Miller and Charles (1991), and show that asymmetric

versions achieve dramatic improvements on their symmetric counterparts. To our
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knowledge, this is the first demonstration that an asymmetric word similarity mea-

sure models human judgments better than a symmetric measure (Tversky did not

report on word similarity experiments, although this result would hardly have sur-

prised him).2

Accordingly the rest of this paper divides into four parts. In Section 2, we intro-

duce Tversky models and show their relationship with later work on word similarity.

In Section 3 we describe set-up for four experiments demonstrating the effectiveness

of the α-parameterized models, including human judgments. Our goal is twofold:

first, to show there is a problem: Performance for normalized systems drops dra-

matically for rarer words; second, to demonstrate the benefits of α-parameterized

systems are strongest for words at frequency extremes, very frequent and very in-

frequent words. In Section 4, we present our results, and finally, in Section 5, we

discuss why α-parameterized systems perform as well as they do.

Our experiments will include symmetric and asymmetric Dice-family similarity

measures and cosine (for the comparison with Euclidean normalization), as well as

some unnormalized similarity measures. Thus, for example, we include dot product

(or inner product) as one of our similarity measures, because it can be viewed as

an unnormalized version of cosine. One of the most counterintuitive findings of

this study is that unnormalized systems perform better with less frequent words

than normalized systems. We show that α-parameterized systems and unnormalized

systems lie on a continuum: The unnormalized systems can (for certain tasks) be

thought of as maximally skewed systems in which similarity is simply measured

by the unnormalized magnitude of shared information between the two words. The
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surprising result is that, in a number of applications, an unnormalized system may

give the best performance with very rare words.

2 Asymmetry

Symmetry is a central assumption of most accounts of similarity, but it isn’t always

a safe assumption, particularly when it comes to capturing the ways human judge

similarity. Tversky (1977) reviews the results of a number of different psychology

experiments, including a number of his own, showing that human similarity judg-

ments could be systematically asymmetric. Two examples of the kinds of judgments

discussed are given here:

1. An ellipse is more like a circle than a circle is [like] an ellipse.

2. North Korea is more like China than China is [like] North Korea.

These examples illustrate one of his main findings: the variant is more similar to

the prototype, in the sense of Rosch (1975), than vice versa. One of the two models

Tversky uses to try to account for asymmetry results is called a ratio model. The

similarity calculation used by the ratio model is:

F (A ∩ B)

F (A ∩ B) + αF (A\B) + βF (B\A)
(1)

Here A and B represent feature sets for the objects being compared; the term in

the numerator is the weight of the shared features, a measure of similarity, and the

last two terms in the denominator are measures of dissimilarity: whenever α 6= β,

one set of dissimilarities gets a heavier weight, and we have asymmetry.

It’s instructive to consider a simplification of this model. If all feature values =
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1 and α+ β = 1, the model reduces to:

sim(A,B) =
|A ∩ B |

(1− α) |B | + α |A |
(2)

Now the similarity is just the cardinality of the set of shared features divided by

a weighted sum of the cardinalities of A and B. The simplified form captures a

basic prediction of the model. The potential for asymmetry will directly correlate

with the difference in cardinality of the two sets. If the difference in cardinal-

ity (or total feature mass, in the unsimplified model) is great, then the similarity

values of sim(A,B) and sim(B,A) can differ greatly for a given value of α. Con-

versely, if the two sets, or total feature mass, are the same size, then sim(A,B) and

sim(B,A) are always the same and changing the value of α has no effect. This is

illustrated in Figure 1. Tversky’s model predicts that significant asymmetry arises

when there is a large difference in the aggregate masses of the two feature sets

being compared. Thus, according to the model, that’s what must be happening in

prototype/variant comparisons: there must be a large difference in the richness of

the representations of the prototype and variant. Note that the same model would

also tend to be asymmetric when comparing feature vectors with very different di-

mensionality. Thus, given a distributional representation of meaning, Tversky also

predicts asymmetries should arise when comparing frequent words and less frequent

words. In the remainder of this paper, we will be presenting various experiments

to evaluate the performance of Tversky models across word ranks, bearing in mind

that the cases where using Tverskyan models will make the most difference is when

comparing words of very different ranks.
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Fig. 1. Tversky model: Simplified

Tversky notes the relationship of his ratio models to the similarity measure in

Eisler and Ekman (1959), which proposes a similarity function equivalent to the

earlier Dice Coefficient (Dice 1945). Here, we develop the relationship of Tver-

sky’s models to more recent similarity models generalizing Dice or using the same

normalization strategy. To generalize the idea of feature matching from sets to real-

valued features we represent the total mass of a set of features shared by two vectors

as the sum of the results of applying some operation si (for shared information)

to each of the shared feature values. We refer to the sum of the shared information

according to shared information operation si as σsi. This leads naturally to rep-

resenting the dissimilarity of A and B as the difference between the information
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Name Definition Ratio Abbrev

dice prodα(w1, w2)
w1 · w2

(1− α) ‖w1‖2 + α ‖w2‖2
Tα,prod dc dp

dice†α(w1, w2)
∑

f∈w1∩w2
min(w1[f ], w2[f ])

(1−α)
∑
w1[f ]+α

∑
w2[f ]

Tα,min dc dag

linα(w1, w2)
∑

f∈w1∩w2
w1[f ]+ w2[f ]

(1−α)
∑
w1[f ]+α

∑
w2[f ]

Tα,avg lin

dice
√
prodα(w1, w2)

∑
f∈w1∩w2

√
w1[f ]·

√
w2[f ]

(1−α)
∑
w1[f ]+α

∑
w2[f ]

Tα,geom mn dc dpsq

cos(w1, w2) dice prod w/ unit vectors Tα,prod cos

Table 2. Ratio models; the last column gives the abbreviation that will be used in

figure legends.

mass A shares with itself and the information mass it shares with B.3

σsi(A,B) =
∑
f∈A∩B si(A[f ],B[f ])

Fsi(A ∩ B) ⇒ σsi(A,B)

Fsi(A/B) ⇒ σsi(A,A)− σsi(A,B)

(3)

Taking all these assumptions together with the assumption that α+β = 1 leads us

from Tversky’s original formulation to:

Tα,si(w1, w2) =
σsi(w1, w2)

(1− α) · σsi(w1, w1) + α · σsi(w2, w2)
(4)

We will call equation (4) a generalized ratio model. 4 Varying the si parameter,

the shared information operation, yields different similarity functions, among them

a number discussed in the literature. The variants used in this study are shown in

Table 2. Setting the si operation to be the product of two feature values gives us

what we will call dice prod, popular in the data mining literature, for example
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(Strehl 2000:55); setting it to be min gives us dice†, the function used in Cur-

ran (2004), and setting it to be the average of the two feature values gives us the

function used in Lin (1998). Using geometric mean (the geometric mean of x and

y is
√
x · y) yields a previously unstudied function we call dice

√
prod. Cosine

is just dice prod applied to unit-length vectors. Recognizing the conceptual im-

portance of Dice’s original feature-set similarity function (Dice 1945), we will refer

to the normalization strategy employed in the denominator of (4) as Dice-family

normalization.

In the experiments below, we will look at both symmetric and nonsymmetric

versions of all the functions in Table 2 (α = .5 and α 6= .5) except cosine, for which

asymmetry is not possible. As with the simplified model, when the aggregate feature

masses of the vectors are all the same — in this case, all unit vectors — the ratio

model doesn’t yield asymmetry. Thus, cosine is best seen as an instance of a different

normalization strategy, Euclidean normalization, which is not α-parameterizable.

We include cosine in our study to grade the performance of Euclidean normalization

versus Tversky models.

Cosine has many mathematically appealing properties, including its scale-

independence and its geometric interpretation, but from the present perspective

it arises because Euclidean normalization is a natural scaling strategy: It provides

a way of representing the information in small and large dimensionality vectors in

comparable ways, and in that capacity Euclidean normalization can be applied be-

yond cosine. To explore this, and to better understand the limitations of Euclidean

normalization, we will look at one other example: Euclidean normalization combined
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with geometric mean. We call the resulting similarity function dot
√
prod euc.

It is defined as follows:

dot
√
prod euc(w1, w2) =

∑
f∈w1∩w2

√
w1[f ] ·

√
w2[f ]√∑

f w1[f ]2
√∑

f w2[f ]2
(5)

Just as cosine is σprod — or dot product — performed on unit vectors, so

dot
√
prod euc is σgeom mn performed on unit vectors. dot

√
prod euc is not

mathematically pretty like cosine: It does not have a natural maximum or mini-

mum, and self-similarity is not a maximum; because of this we will refer to it as a

“pseudonormalized” function.

There is an alternative normalization strategy which yields a truly normalized

function for geometric mean, and that is L1 normalization, in which the normaliza-

tion factor is
∑
w[f ] rather than

√∑
w[f ]2. When w = (w1, w2, . . . , wn), we write

√
w for (

√
w1,
√
w2, . . . ,

√
wn), ‖w‖2 for the L2 norm of w, and ‖w‖1 for the L1

norm. The σ√prod operation applied to the L1 normalized version of w1 and w2

gives the cosine of
√

w1 and
√

w2:

cos(
√

w1,
√

w2 ) =
√
w1

‖√w1‖2
·
√
w2

‖√w2‖2
=

√
w1√
‖w1‖1

·
√
w2√
‖w2‖1

=
√

w1

‖w1‖1
·
√

w2

‖w2‖1
= σ√prod( w1

‖w1‖1
, w2

‖w2‖1
)

(6)

Thus, we can think of L1-normalized σ√prod as taking the cosine of the data vectors

in a transformed (compressed) space. The L1 system makes a very good similarity

system with frequent words, but we will use the L2 system here because it is much

better with infrequent words. In fact, it vastly outperforms cosine with infrequent

words in the nearest neighbor task described below, a result which will help show

the limitations of cosine in sparse word similarity applications.
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We will also include a set of unnormalized analogues of the functions in Table 2

in our study, to better understand how the performance of normalized functions

changes across word ranks. As noted in the introduction, these functions, shown in

Table 3, perform better with infrequent words than their normalized counterparts.

In each case the unnormalized function is simply the numerator of the definition of

Tversky model function; that is, the sum of the shared information of the vector

features.

Because of this, unnormalized systems are equivalent to α = 0 Tversky models

on some tasks. In particular, for applications in which w1 is held constant (which

includes all the tasks described in Section 3, except the human judgment task), the

similarity scores assigned by an α = 0 system are proportional to those chosen by

its unnormalized counterpart. For example, when α = 0 for dice prod, we have:

dice prodα=0(w1, w2) =
w1 · w2

‖w1‖

∝ w1 · w2 = dot prod(w1, w2).

(7)

Since the denominator of the first line of (7) is independent of w2, the relative simi-

larities are determined by the numerator. Thus, for example, the α = 0 dice prod

system will choose exactly the same nearest neighbors for w1 as dot prod.

In sum, we will study 10 basic similarity functions, 4 Tversky model functions,

4 unnormalized functions, and 2 Euclidean normalized functions, together with

various asymmetric α-parameterized versions of the Tversky model functions.5

Thus far, we’ve shown that asymmetric models can play a key role in accounting

for human similarity judgments, basing our case purely on Tversky’s work, and
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Function SI name SI Dfn Abbrev

dot prod(w1, w2) σprod(w1, w2)
∑
f∈w1∩w2

w1[f ] · w2[f ] dp

dot min(w1, w2) σmin(w1, w2)
∑
f∈w1∩w2

min(w1[f ], w2[f ]) dm

dot avg(w1, w2) σavg(w1, w2)
∑
f∈w1∩w2

w1[f ] + w2[f ]

2
davg

dot
√
prod(w1, w2) σgeom mn(w1, w2)

∑
f∈w1∩w2

√
w1[f ] ·

√
w2[f ] dpsq

Table 3. The four unnormalized functions of this study; the last column gives the

abbreviation that will be used in Figure legends.

we’ve shown that a class of Dice-family measures important in the literature are

actually Tversky models, meaning that they have asymmetric versions. However,

the advantages of asymmetry have actually been noted much more recently, for a

different class of similarity functions, and motivated by very different concerns.

Motivated by the problem of measuring how well the distribution of one word w1

captures the distribution of another w2, Weeds and Weir (2005) explore asymmetric

models that compute similarity as a weighted combination of several variants of

“precision” and “recall”, scores that capture how well the features of w1 predict

those of w2. W&W’s best-performing models, the additive precision/recall models,

appear not to be Tversky models, since they compute separate sums for precision

and recall from the f ∈ w1 ∩ w2, one using w1[f ], and one using w2[f ]. However,

one of their models actually is a Tverskyan ratio model. To see this, we divide (4)

everywhere by σ(w1, w2):

Tsi(w1, w2) =
1

α · σ(w1, w1)

σ(w1, w2)
+

(1− α) · σ(w2, w2)

σ(w1, w2)

(8)
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If the si is min, then the two terms in the denominator are the inverses of what

W&W call difference-weighted precision and recall:

prec(w1, w2) =
σmin(w1, w2)

σmin(w1, w1)

rec(w1, w2) =
σmin(w1, w2)

σmin(w2, w2)
,

(9)

So for Tmin, (4) can be rewritten:

1
α

prec(w1, w2)
+

1− α
rec(w1, w2)

(10)

That is, Tmin (what we call dice†) is a weighted harmonic mean of W&W’s pre-

cision and recall, the so-called weighted F-measure (Manning and Schütze 1999).

W&W discuss various ways of combining their precision and recall scores, including

weighted harmonic mean, arithmetic mean, geometric mean, and weighted combina-

tions of geometric and arithmetic mean, but they do not actually include a weighted

harmonic mean in their evaluation.

Long before Weeds and Weir, Lee (1999) and Lee (2001) proposed an asymmetric

similarity measure as well. Like Weeds and Weir, her perspective was to calculate

the effectiveness of using one distribution as a proxy for the other, a fundamentally

asymmetric problem.

For distributions q and r, Lee’s α-skew divergence takes the KL-divergence of a

mixture of q and r from q, using the α parameter to define the proportions in the

mixture:

α-skew(w1, w2) = D(w1‖α · w2 + (1− α) · w1), (11)

where D( ‖ ) is KL-divergence, a measure of how much information is lost in using
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one distribution to predict another, and where the values in word vectors represent

conditional probabilities: w[f ] = P(f | w). Being fundamentally information theo-

retic, Lee’s model falls into a different class than either the W&W models or the

Tverskyan models used here. However, we show in Section 4.4 that Lee’s model and

the Tverskyan models perform comparably on a distribution prediction task, and

in Section 5.3 we argue that they probably succeed for similar reasons.

3 Methods

We conducted four experiments to explore the performance of α-parameterized

Tversky models.

1. Correlation with human judgments for 3 wordsets:

MC/RG Miller and Charles 1991, Rubenstein/Goodenough 1965

Wordsim 353 Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman,

and ERuppin 2002

Wordsim 201 Agirre, Alfonseca, Hall, Kravalova, Pasca, and Soroa 2009

2. Nearest neighbor quality: NNs scored by PPR — a WordNet-based Personal-

ized Pagerank system (Agirre et al. 2009) — and ESA — a Wikipedia-concept

based similarity system Gabrilovich and Markovitch (2009).

3. Synonym detection: selecting a true synonym from a set of candidates, first

used as an evaluation task with TOEFL questions (Landauer and Dumais

1994; Freitag, Blume, Byrnes, Chow, Kapadia, Rohwer, Wang 2005)

4. Distribution prediction: Predicting noun distributions with nearest neighbors

(Lee 1999)
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The last three tasks were all inspired by applications where improvements had

previously been demonstrated for asymmetric similarity functions. We discuss each

of these tasks in more detail in the following sections.

The systems were all dependency-based word vector models trained on a shared

data set on a single corpus, the BNC, parsed with the Malt Dependency parser

(Nivre 2003). We parsed half the BNC, sections A-E and FA and F9, for a total of

52,432,977 words. This size corpus was sufficient to allow significant sparsity effects

to crop up with the top 10,000 nouns, and to allow pairwise similarity comparisons

against all nouns (not just the top 10000) to be done for a large number of systems in

reasonable computing time. The resulting dependency treebanks were used creating

two dependency DBs, using basically the design in Lin 1998. Features were not

pruned, except that negative value features were ignored in all the models. Feature

pruning of course interacts with sparsity effects, which is what we are studying, but

our preliminary goal in this paper is to look at sparsity effects with a very simple

pruning model.

Weeds and Weir (2005) use the term weight function for the function used to

weight feature counts by their importance; for our feature function, we looked at four

of the many possibilities in the literature. Three weight functions frequently used in

similarity and collocation studies are Pointwise Mutual Information or PMI (Church

and Hanks 1990), T-score, and Z-score. Curran (2004) and Weeds and Weir (2005)

both report PMI to be among the most successful schemes, and Weeds and Weir

report T-score to be the best, with Z-score and PMI among the strong contenders.

We have included all three in this study.6 We report results supporting this claim
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Weight fn w[f ]

PMI log
p(f, w)

p(f)p(w)

T-score
p(f, w)− p(f)p(w)√

p(f, w)

Z-score
p(f, w)− p(f)p(w)√

p(f)p(w)

Log SCP log

(
p(f, w)2

p(f)p(w)

)
Table 4. The four weight functions studied here

for the nearest neighbor experiment, as well as results for one other association

measure which has achieved some success in collocation discovery, a log scale version

of Symmetric Conditional Probability (Ferreira da Silva and Pereira Lopes 1999),

which we will call Log SCP.7 The formulae for all four weight functions are given in

Table 4, where, P (f) denotes the probability of the feature f , P (w) the probability

of a word, and P (f, w) their joint probability. The probability of any dependency

type is estimated as its frequency divided by the number of dependency relations in

the corpus. The frequency of a feature F is the number of tokens of the feature word

serving the function associated with that feature. For example, the frequency of the

man-subj feature is the number of times man has occurred as a subj (subject). The

frequency of a word w is the total number of dependency relations it enters into

in the corpus. We show that the improvements due to α-skewing can be observed

with all four weight functions.
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Fig. 2. Effect of high α in rank-biased system

3.1 Human judgments

For capturing human judgments, we will use rank-biased versions of ratio models,

in which the α-weighted word is always the less frequent word.

Rα,si(w1, w2) = Tα,si(wc, wr)

where [wc, wr] = Order by rank({w1, w2})

(12)

The rank-biased similarity of w1 and w2 is just the ratio model similarity with the

rarer word as the α-weighted argument.

The effect is shown Figure 2, in which wr is the rare word and wc is the com-

mon word: When α is high, what matters is the ratio of the shared information,

σ(wc, wr), to the feature mass of the rare word (the smaller circle), and when it’s

low it’s the ratio of the shared information to the feature mass of the common word

(the larger circle). Borrowing the perspective of Weeds and Weir (2005), we can
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think of an asymmetric measure of the similarity of two words as quantifying how

well one word captures the distribution of the other. If we take the perspective of

measuring how well wc captures the distribution of wr, then we might describe the

rank-biased model by saying that high α emphasizes the recall score and low α

emphasizes the precision score.

The human judgement task is the only task for which we use rank-biased similar-

ity. All three of the other tasks involve computing a set of similarities for some fixed

noun we will call the target noun, which is always taken to be the first argument

of Tσ, the word receiving weight 1− α.

3.2 Nearest neighbor evaluation

This task is the simplest of the experiments. We use each system to find the nearest

neighbors of the 10000 most frequent nouns in the BNC corpus, and then evaluate

the results. There is a solid body of previous work to fall back on for evaluating the

quality of word similarity systems. Grefenstette (1994) is a full-scale exploration of

using existing online thesaurus resources to evaluate distributional word similarity

methods; Lin (1998), McHale (1998), Curran (2004) reproduce and extend Grefen-

stette’s results considerably, and Weeds and Weir (2005), Heylen et al. (2008) and

Bordag (2008) offer alternatives with easier to apply WordNet-based evaluation

tools.

In this task we focus on evaluating nearest neighbors. This is like Heylen and

one of the tasks in Weeds and Weir, but we differ in assigning a single evaluation

score to a single nearest neighbor. Our primary goal is to study the degradation in
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performance as words get rarer, and to compare the rate at which the performance

of different systems degrades. For this purpose aggregating the nearest neighbor

scores at 500-word intervals as we move from most frequent to least frequent in a

set of 10,000 nouns gives very clear results. We experimented with two evaluation

measures, very different in type, the Personalized Pagerank similarity measure of

Agirre et al. (2009), a system the authors call PPR, and the concept-based Explicit

Semantic Analysis, or ESA, system of Gabrilovich and Markovitch (2009).

A few words motivating this choice. Table 5 summarizes the results for each

of the Wordnet-based systems for Spearman correlations with human judgements

of the Rubenstein-Goodenough/Miller-Charles word set (Miller and Charles 1991,

Rubenstein and Goodenough 1965), a wordset used in a large number of word

similarity studies. Reported numbers are taken from the summary in Agirre et al.

(2009).8 It can be seen that ESA and PPR exhibit at- or near- state of the art

performance on MC/RG dataset, but performance on these benchmarks is not the

only consideration. Two other factors were equally important.

First, both measures are defined in a way that makes them largely immune to

word frequency effects. For this study, we need fairly robust measures which, as

much as possible, retain the same level of resolution for rare and frequent words.

PPR and ESA do this, PPR by being based on WordNet, ESA, by being built from

the very large set of data available through Wikipedia.

As described in Agirre and Soroa (2009), the PPR measure is based on computing

Personalized Page Rank vectors for each word in the WordNet graph, which requires
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resolving the following traditional page rank equation:

Pr = c ·MPr + (1− c) · v. (13)

Here v is a vector of length N (the size of the graph), representing the probability

of a surfer randomly teleporting to each node in the graph, M is a transition prob-

ability matrix for the entire graph, c is the probability of teleportation, (1− c) the

probability of following a link, and Pr is the page rank vector for the graph. In the

traditional page rank measure, each node has probability
1

N
in v, but in person-

alized page rank (Haveliwala 2003), the initial distribution of v has almost all the

probability mass concentrated on one or more nodes ν, and on successive iterations

that mass is transmitted outward along the links from ν. After some number of

iterations (the authors cite 30) the computations of Pr are halted and the resulting

Pr vector gives us a picture of what portions of the graph the nodes in ν is most

richly connected to. Nodes that are similar to ν are connected to similar neighbor-

hoods of the graph in similar ways. In the WordNet word similarity application, ν

is the set of concepts associated with a word in WordNet, and the neighborhood is

the set of concepts reachable via WordNet relations in the graph.

ESA describes each word as a weighted combination of all Wikipedia concepts.

That is, it seeks to characterize a word’s meaning by the strength of its association

with a set of known concepts. More specifically, a word in ESA is represented by a

vector of length N, where N is the number of concepts in Wikipedia (roughly, each

Wikipedia document is a concept), and each cell in the vector contains a TFIDF
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score for the word/concept pair. The similarity of two word vectors is computed by

their cosine score.

Besides their excellent performance on the benchmarks, there were two other

reasons for the appeal of ESA and PPR. First both ESA and PPR work on words,

whereas many of the path-based WordNet functions with state-of-the-art results

work on concepts (for example, Lin and JCN) Our distributional word vectors

represent word/part-of-speech pairs and thus correspond directly to PPR person-

alized pagerank vectors (PPVs), which also represent word/part-of-speech pairs.

A path-based similarity function such as the WordNet implementation of Lin and

Jiang-Conrath however, can only score the similarity of two concept nodes. Ac-

cordingly, to evaluate nearest neighbor quality, we must either choose senses for the

word pairs, or somehow average over all of them. The PPR pagerank vectors and

ESA vectors, on the other hand, combine information about all the senses instanti-

ated by the word form. This means no decision has to be made about which sense

to use in the nearest neighbor calculation.

Second, ESA and PPR have been argued to measure different kinds of semantic

distance. As noted in Agirre et al. (2009), the original RG/MC guidelines asked

human judges to evaluate word pairs for semantic similarity, ignoring other seman-

tic relationships that might obtain, such as strength of association. The guidelines

for Wordsim made no such distinction. Thus, words like tiger and jaguar are se-

mantically similar, denoting similar kinds of things in the world, but words like

astronomer and star denote very different kinds of things, but are strongly associ-

ated. The Wordsim guidelines would seem to encourage annotators to value both
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pairs highly, and the RG/MC guidelines only to value tiger/jaguar highly. Both sets

of guidelines yielded judgments with strong inter-annotator reliability, so both seem

to be valid. Based on the results for the RG/MC and Wordsim wordsets performance

discussed in Agirre et al. (2009), PPR targets semantic similarity, and performs

less well at capturing semantic relatedness. Based on Gabrilovich and Markovitch

(2009), ESA is very good at capturing semantic relatedness, performing very well

on the full Wordsim dataset. A reasonable hypothesis is that semantic similarity is

hard to capture with sparse data and that, in computing word similarity systems

with less frequent words, we may be edging into territory where capturing semantic

relatedness is a more realistic goal. However, it might also be the case that both

kinds of similarity suffer with sparse data. Thus, it would be useful to try to mea-

sure both kinds of semantic connection, to see which is better preserved. As we shall

see below, ESA and PPR largely agree in their estimates of system performance,

so that discrimination of both semantic relatedness and semantic similarity seems

to be impaired with less frequent words.

For the PPR-based evaluation, we used the precomputed wn30g word vectors9

and used dot product (which outperformed cosine) as our similarity measure, fol-

lowing Agirre et al. (2009). For ESA, we used the 2005 Wikipedia dump, 10 and

Cagatay Calli’s well-documented implementation, with cosine as the similarity func-

tion. 11

To establish baselines we did the following: We paired each of the 10,000 test

nouns with another of the 10,000 test nouns, chosen at random. We then scored the

results with PPR and ESA. This yielded scores hovering around the same values at
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System Reported Reproduced here

Resnik (1995) .73

Leacock et al. (1998) .80

Lin (1998) [Hasana & Mihalcea 2011] .79

Jiang and Conrath (1997) .83

Yang and Powers (2005) .87

Hughes and Ramage (2007) .90

Yih and Qazvinian (2012) .89

Pilehvar et al. (2013) .87

PPR .83 .83

ESA .75 .80

Table 5. Published system correlations with human judgments (RG/MC dataset).

For the two systems used for evaluation here, we show the scores our re-implemen-

tations achieve.

all word ranks, .00334 for PPR and around 0.0140 for ESA, indicating that despite

the fact that cosine is used for both evaluations, ESA scores are in general about an

order of magnitude higher than PPR scores. We will use these somewhat wavering

lines as reference lines indicating random performance in the graphs below.
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3.3 Synonym selection

The synonym selection task described in Freitag et al. (2005) uses TOEFL-like test

items: a test noun is paired with a synonym for one (possibly rare) sense, as defined

by WordNet, and three randomly chosen distractor nouns.12 The task is to pick out

the true synonym. The task is more difficult than it may seem, because the test

nouns are almost always ambiguous, and because the testset probes multiple senses

of the same word, including some fairly obscure ones. For example, the noun test

set (the one used in the experiments below) includes the following items using the

WordNet lemma world as test item (the synonym is always the first word following

the test item):

world earth hail scaffolding trapping

world domain prey upbeat trim

world mankind beatrice cynicism observation

world creation ca bell mouth

To facilitate comparison with previous work on this task, we also report results on

the original TOEFL question set, basically identical in form. Its utility as evaluation

tool for word similarity/clustering systems was pioneered in Landauer and Dumais

(1994), and results with this data set have since been reported on in a number of

studies, including Turney et al. (2003) and Bullinaria and Levy (2012). This test

set differs from all the others in this study in that it is not limited to nouns.
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3.4 Distribution prediction with NNs

In this task, a test item consists of a test verb, a test noun, and a distractor verb

with roughly the same probability of occurrence as the test verb. The test noun has

occurred as the direct object of the test verb in the BNC corpus, but not in the

system training set, and the task is to try to choose between the test verb and the

distractor based on the distributional facts of the test noun’s 100 nearest neighbors.

Following the setup described in Lee (1999),13 we set aside 20% of the data as test

set and select only test items where the noun and verb have not co-occurred in the

training set. The decision procedure is Lee’s: Each neighbor votes for one of the

verbs based on the weights assigned to the verb in its word vector; in ties both

verbs receive one-half a vote. Eliminating test verbs that have co-occurred with the

test nouns in the training data is particularly important for experimenting with

less frequent nouns, because for such test items, the task actually becomes easier

for less frequent test nouns. Consider the case in which the dependency set of a test

noun contains the test verb and suppose the noun is a less frequent word. Since its

nearest neighbors necessarily share dependency features with the test noun, they

are actually more likely to also contain the verb in their dependency sets with

a less frequent noun (with its smaller set of dependency features), and thus are

more likely to correctly predict the co-occurrence. This is particularly true for this

task, since to follow Lee’s original setup as closely as possible, we used pruned

noun vectors that contained only instances of the -obj relation (verbs for which

the noun had served the direct object function). We used 5-ways cross-validation.
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For this evaluation, given the experiment model, we will include a comparison with

the α-skew function that performed best in Lee (1999).

4 Results

4.1 Human judgments

We turn to evaluating how well our 10 core systems and the α-parameterized sys-

tems correlate with human similarity judgments. Table 6 shows the basic results

from the Malt-parser based system for Spearman’s correlations with human judg-

ments on the 3 word sets. The scores in the column labeled .97 are for highly skewed

rank-biased systems (α = .97).14 The scores to the left of those are scores for iden-

tical symmetric systems (α = .5). In each case the rank-biased system shows a

dramatic improvement over the corresponding symmetric system.

For comparison, scores for the Euclidean systems cosine and dice
√
prod euc

are included below the first line, as well as the four unnormalized systems. As

might be expected, the four unnormalized systems are consistently worse than the

normalized systems. Cosine is the best of the ten symmetric distributional systems,

but it can be seen that α-skewing makes two of the ratio model systems better than

cosine.

The two scores below the second line are for our implementations of the systems

we use for nearest neighbor evaluation, the Wordnet based PPR system and the ESA

system. They are basically tied on the MC/RG dataset and perform at comparable

high levels on the others.
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Correlation of system scores human judgments

MC/RG Wdsm201 Wdsm353

α .5 .97 .5 .97 .5 .97

dice prod .59 .71 .50 .60 .35 .44

lin .48 .62 .42 .54 .29 .39

dice† .58 .67 .49 .58 .34 .43

dice
√
prod .50 .64 .43 .55 .30 .41

Cos .65 NA .56 NA .41 NA

dot
√
prod euc .48 NA .29 NA .19 NA

dot prod .46 NA .32 NA .22 NA

dot avg .36 NA .17 NA .12 NA

dot min .48 NA .31 NA .22 NA

dot
√
prod .38 NA .18 NA . 12 NA

PPR .80 NA .75 NA .68 NA

ESA .80 NA .73 NA .65 NA

Table 6. Similarity functions: Correlation with human similarity judgments for

symmetric and asymmetric α systems

4.2 Nearest neighbor task

We divide the results for the nearest neighbor task into two parts: performance

with frequent words and performance across all word ranks. The takeaway point is

that suitably parameterized α-systems are the best performers in both cases.
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We first discuss performance with frequent words.

The results in Tables 7 and 8 give PPR and ESA numbers for all 10 core systems

combinations and for 4 α = .70 systems. Each cell contains the mean PPR and

ESA scores for the nearest neighbor pairs discovered by a similarity system. Each

row gives the result for one si for four systems: one with no normalization, one

with Euclidean normalization, and two with Dice family normalization. Thus, since

cosine is dot product with Euclidean normalization, it is represented in the product

row (labeled prod) in the Euclidean normalized column, with the raw dot product

numbers to the left and the symmetric Dice normalized version (which we called

dice prod in Table 2) to the right. The symmetric Lin system is in the fourth row

(the avg si) in the Dice normalization column. The last column is reserved for the

α = .70 system score. Table 7 gives the results for noun ranks 1-500 and Table 8

gives aggregated results for two datasets, noun ranks 1-1500, and noun ranks 1-

3500. There are significant differences in both the numbers and relative strengths

of different systems in the three datasets.

The trends to notice are the following:

• Despite the differences in scale, ESA and PPR agree on the best and worst

systems and there is significant agreement on the relative merits of the systems

in all three datasets (e.g., the ESA and PPR scores on the 1-500 dataset have

a Spearman’s correlation of .95, p < .001).

• Cosine is a very good system on 1-500 dataset (the best of the symmetric
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systems and even better than 2 of the α-systems, according to ESA), but it

is the worst by far on the 1-3500 dataset.

• Except for cosine, the normalized systems in the second, third, and fourth

columns outperform the unnormalized systems in the first column on all

three datasets, but the gap between them narrows considerably in the 1-3500

dataset.

• The best systems on the 1-500 dataset are the α = .70 systems. Each of those

systems outperforms its symmetric counterpart considerably (the score im-

mediately to its left), on both the PPR and ESA evaluations. This is reversed

on the 1-1500 dataset, and on the 1-3500 dataset, the α = .70 systems have

gone from the best to nearly always the worst (except for cosine).

We turn to the main question of the paper: What system or systems perform

best at low ranks? More precisely, we are interested in a system that degrades well:

it performs well at high ranks (like cosine and the α = .70 systems) and remains

robust at low ranks (unlike cosine and the α = .70 systems).

The plots in Figure 3 summarize the main results for the ten core symmetric

systems across all 10,000 nouns. This graph shows the mean PPR scores (y axis)

taken at 500 rank intervals (x-axis). We discuss the two panels in turn.

Top panel: The top panel shows three of the best normalized core systems,

dice prod (dc dp), dice† (dc dag), and dot
√
prod with Euclidean normalization

(dpsq euc), with one unnormalized system, dot prod (dp), for comparison. The

nearly horizontal line at about .003 shows random performance. Note that the best
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None Euc Dice α = .70

prod .0235

.513

.0319

.736

.0295

.732

.0348

.743

ppr

esa

min .0227

.475

.0294

.703

.0327

.736

ppr

esa

√
prod .0211

.356

.0234

.481

.0278

.690

.0326

.725

ppr

esa

avg .0211

.318

.0275

.707

.0323

.732

ppr

esa

Table 7. Ranks 1-500, core systems and α = .70 systems

performer at low ranks is the unnormalized system, dot prod, which started out

behind all the normalized systems in the 1-500 dataset, as shown in Table 7.

Bottom panel: The bottom panel shows that all four unnormalized systems

from Table 3 perform better at low ranks than any of the normalized systems,

excluding α-normalized systems. The representative normalized system shown is

dice prod (dc dp).15

The bottom panel illustrates a key result for the symmetric systems: For the

nearest neighbor task, normalization hurts with infrequent words. There are differ-

ences among the si’s as to how much it hurts and at what rank the effect manifests

itself, but in the end it always hurts. For rarer words, an unnormalized system al-
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1-1500 1-3500

None Euc Dice .70 None Euc Dice .70

p .022

.497

.028

.552

.029

.646

.028

.554

.019

.382

.010

.146

.023

.416

.017

.293

ppr

esa

m .021

.454

.027

.610

.026

.537

.018

.339

.020

.384

.017

.283

ppr

esa

√
p .019

.345

.022

.493

.028

.613

.024

.529

.016

.245

.020

.399

.019

.390

.016

.275

ppr

esa

a .019

.275

.026

.607

.024

.517

.016

.194

.019

.380

.015

.260

ppr

esa

Table 8. Ranks 1-1500 vs. 1-3500, core systems and α = .70 systems

ways outperforms its normalized counterpart, whether that normalization is Dice or

Euclidean. The pattern is illustrated in Figure 4, which compares the systems using

the
√
prod and prod operations. With

√
prod, Euclidean normalization performs

better than Dice normalization; in both cases, however, the winner with infrequent

words is the unnormalized system. Figure 5 shows that these results are replicated

using ESA scores.

At the simplest level, what these results mean is that all the symmetric systems

are very bad at noun rank 10,000 (the least frequent noun in the study). This is
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Fig. 3. Top panel: PPR scores for top normalized systems across ranks: dot
√
prod with

Euclidean normalization (dpsq euc), dice† (dc dag), and dice prod (dc dp). Unnormal-

ized dot prod (dp) and random baseline added for comparison; Bottom panel: the four

unnormalized systems dot prod (dp), dot min (dm), dot avg (davg), and dot
√
prod

(dpsq), with Dice-normalized dice prod (dc dp) and a random performance line for com-

parison.
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Fig. 4. Top panel: PPR scores for the three prod systems, cosine (cos, Euclidean nor-

malized) dice prod (dc dp, Dice-normalized), and dot prod(dp, unnormalized), with

the unnormalized system dot prod winning out with infrequent words; Bottom panel,

PPR scores for the three
√
prod systems, dot

√
prod euc (dqsq euc, Euclidean nor-

malized) dice
√
prod (dc dpsq), and dot

√
prod (dpsq, unnormalized), with the same

result: the unnormalized system wins out with infrequent words.
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Fig. 5. ESA scores for same systems as in Figure 4. Top panel: the three prod systems, co-

sine (cos, Euclidean normalized), dice prod (dc dp, Dice-normalized) and dot prod(dp,

unnormalized), with the unnormalized system (dp) winning out with infrequent words.

Bottom panel: the three
√
prod systems, dot

√
prod euc (dpsq euc, Euclidean normal-

ized), dice
√
prod (dc dpsq, Dice-normalized), and dot

√
prod (dpsq, unnormalized),

with the same result.



Word Similarity 39

fairly clear because the unnormalized systems are bad with frequent nouns: they

were the worst performers both and the 0-500 word set (Table 7). They continued

to get worse from the 0-500 word set; they just did so at a slower rate than the

normalized systems. At rank 10,000, they win by a large margin, because what the

good systems do to be good has stopped working.

We have established that all the symmetric nearest neighbor systems studied here

get worse with less frequent words, and that the Euclidean and Dice normalization

systems do so more rapidly, until they are actually worse then the unnormalized

systems.

Turning now to the α-systems, we see that the steep decline of Dice normalization

systems can be arrested by tweaking the α parameter. The effect of varying α for

dice prod and dice† is shown in Figure 6.

For both dice prod (top panel) and dice† (bottom panel), performance for in-

frequent words improves as α decreases. At the same time, performance for frequent

words gets worse. The α = .04 systems are bad on 0-500 test set, but outperform

symmetric dice prod (α = 0.50) and dice† (α = 0.50) from about rank 3500 on,

creating a crossover of the performance curves. On the other hand, the pattern re-

verses when α > .5: The two α = .70 systems are far better than the α = .5 systems

on the 1-500 test set, but the α = .70 systems crash far faster than the symmetric

systems. Summarizing: Values of α above .5 yield very good frequent-word systems;

values below .5 yield very good less frequent word systems.

The same trend shown for dice prod and dice† is replicated on the other two

Dice normalization systems: lin and dice
√
prod. Values of α above .5 yield very
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Fig. 6. Sample of α systems for dice prod and dice†. Top panel: dice prod with various

values of α. The symmetric system (elsewhere shown as dice prod, dc dp) is α = .50.

The α = .70 system is the best for frequent words (rank < 500), and the α = .04 system is

the best with infrequent words. All systems are at or below random performance by rank

10,000. Bottom panel: The same pattern for dice†.
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good frequent word systems; values below .5 yield very good less frequent word

systems. These are not shown here for reasons of space.

Figures ?? and 8 give the plot for Dice family systems using T-score and Z-score,

demonstrating that the improvements gained by α-skewing are not limited to the

PMI weight function. Pairs of lines using the same Dice Family similarity functions

are shown in each of the plots; for all four pairs with T-score, and for three of

the four with Z-score, the α-skewed system is the one performing better with less

frequent words; the exception is dice prod (dc dp) in Figure 8, which is so bad with

Z-score that performance for both the symmetric and skewed system falls below the

random level by noun rank 1000 (the 1000th most frequent noun). Figure 9 plots

the performance of the same four Dice-systems with the Log SCP weight function.

The striking fact about Log SCP is not just that it mostly produces bad systems,

but that for the one system that does perform well (dice†), the skewed system

works best with all words, even the most common. We will propose an explanation

for this in Section 5.

Figures 7, 8, and 9 also demonstrate that PMI is the best of our weighting

schemes across word ranks; in general, the T-score, Z-score, and Log SCP systems

crash faster than the PMI systems. Hence for the remaining evaluations, we focused

on PMI.

4.3 Synonym selection

Figures 10 and 11 show the results of the synonym selection experiment with

dice prod, the best performer. The y-axis shows accuracy at selecting the true
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Fig. 7. Symmetric (dashed lines) and α = .04 (solid lines) versions of T-score, showing

an improvement for less common words for all 4 Dice-family functions.

synonym from among 4 candidates, and the x-axis, again, shows word rank. Fig-

ure 10 shows the results with at all frequencies. Two system lines are shown, the

α = .04 system — marked with “+” – versus the symmetric system (α = .5) —

marked with diamonds. Clearly the difficulty level of the various word sets does not

correlate perfectly with decreasing frequency, since both performance lines zigzag

up and down a fair amount, but what we see in Figure 10 is that with less fre-

quent words the skewed α = .04 system outperforms the symmetric system quite

consistently. Figure 11 zooms in on the most frequent words and shows the same

mirroring asymmetry we saw on the nearest neighbor task: α-values greater than
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Fig. 8. Symmetric (dashed lines) and α = .04 (solid lines) versions of Z-score. Note that

both dice prod systems with Z-score are very bad, scoring 0 on the 500-1000 data set

and below.

.5 help with more frequent words. The α = .70 and the α = .75 systems are better

for the 1000 most common words.

Figure 12 gives the results on the very similar but much smaller TOEFL dataset.

Distributed among the 80 items, the TOEFL test words include a variety of parts

of speech. Since we have been referring to noun ranks throughout (rank 1000 means

the 1000th most frequent noun), we have not tried separating the small testword

set into smaller sets sorted by rank. The plot shows accuracy for the four Dice-

family systems as a function of α-value. The best score, achieved with dice prod

when α = .70, is 76.25 (with a 95% confidence interval of 65.42-85.06). This equals
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Fig. 9. Symmetric and α = .04 versions of log SCP dice†, showing that for dice†,

α = .04 is an improvement at ALL word ranks (no crossover). With the other functions,

Log SCP’s performance is so bad, there are no results to report. dice prod on the upper

right appears to be a case where the symmetric system crosses above the asymmetric

system, but the random reference line shows this happens where performance is below

random. The combination of Log SCP and Lin is so bad that performance is everywhere

0. This is worse than random because this system consistently chooses very rare NNs.

the corpus-based result of Turney (2008), but falls below the 95% confidence inter-

vals of the hybrid system described in Turney et al. (2003) [score: 97.5] and the

corpus-based SVD system in Bullinaria and Levy (2012) [score: 100]. The takeaway

points for our purposes are that α-skewing improves the performance of dice prod,
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Fig. 10. Synonym selection. The α = .50 and α = .04 systems using dice prod, from

word ranks 0 through 16000. With rare words, the α = .04 system consistently outperforms

the α = .50 system.
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Fig. 11. Synonym selection focusing on word ranks 0 through 4000. The α = .50 and

α = .70 and α = .75 systems using dice prod. In the interval 0-1500, the two asymmetric

systems outperform the α = .50 system.
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dice
√
prod, and lin, and that, with skewing, the smaller training set used here

yields a system competitive with other distributionally trained systems.
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Fig. 12. TOEFL results: Four accuracy score lines are shown, one for each Dice family

function, dice prod (dc dp), dice† (dc dag), Lin (lin), and dice
√
prod (dc dpsqrt),

with the x-axis representing different values of α, decreasing from left to right. In general,

accuracy decreases as α decreases, with one exception at one point for the dice† system,

and the best score is achieved by a skewed system in which α = .70.

4.4 Distribution prediction with NNs

Figure 13 shows the results of the distribution prediction experiment. The task is

to try to predict which of two verbs the test noun has actually co-occurred with,
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using information from nearest neighbor distributions. The y-axis shows prediction

error rate, so lower is better. Error bars represent the highs and lows of the cross-

validation runs. Once again, the best systems are heavily skewed, with very low

values of α performing best with rarer words; but the novelty for this task is that

a α-value greater than or equal to .5 is never the best system, even for the most

frequent test nouns. The best system for the nouns ranked 0-1000 is the heavily

skewed α = .2 system. What the crossovers at rank 1500 and rank 2500 show is

that as the target noun gets rarer, the optimal values of α get still lower, until from

3500 on, 0 is the optimal value. So skewing always helps for this task, and the

benefits increase at lower ranks.

Figure 14 compares the performance of the symmetric dice prod system and

the α = 0 dice prod to that of the α-skew function of Lee (1999) with the same

data and experiment conditions. We see that the α-skew performance parallels the

α = 0 performance across word ranks, but is slightly worse; however, both clearly

outperform the symmetric system.

5 Discussion

5.1 Human judgments

A preliminary worry with the human judgment results is that the improved correla-

tion score is a kind of over-training effect, obtained by cherry-picking the particular

α value that maximizes the correlation score. Figure 15 shows that in fact the scores
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Fig. 13. Distribution prediction: All systems shown are dice prod systems, with er-

ror rates shown for words ranked 0-500, 500-1500,1500-2500, 2500-3500, and 3500-4500.

Performance lines are shown for 8 different values of α, with error bars bracketing best

and worst cross-validation runs. The best error rates are achieved by the system with the

lowest α-value, α = 0.

improve monotonically: Gradually increasing the α value from .5 to .97 gradually

improves all the scores. At that point, some scores begin to turn downward.

Correlations with human judgments thus improve with increased skewing. The

question is why. In understanding these correlation results, it helps to understand

the particular way in which the results improve.

Recall that, with rank-biased systems, setting α to be greater than .5 weights the

system in favor of recall of the rarer word’s features. In Table 9, we list the pairs

whose reranking on the MC/RG dataset contributed most to the improvement of
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Fig. 14. Comparison with Lee’s α-skew function. The dice prod α = 0 system outper-

forms α-skew consistently, and for all except the highest word ranks, both outperform the

symmetric α = .50 system.

the α = .9 system over the default α = .5 system. Under each α-system, we list

the pair score and rank among all the similarity scores for that system on that

dataset, where 63 = most similar, and 0 = least similar. In the last two columns,

we list the similarity rank according to human judgments (column labeled “h”),

and an approximation of the amount of correlation improvement provided by that

pair (δ):16

Choosing α = .9 weights the similarity score toward recalling the features of the

word with fewer modifiers and less information. Note the two items contributing

the most improvement in the rank-biased system are pairs with a large difference

in rank. For example, the proportion of automobile’s modifiers that are also mod-
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Fig. 15. Correlations with human scores monotonically increase with α

ifiers of car contributes much more to the similarity score of car and automobile

than the proportion of car’s modifiers that are also modifiers of automobile. Clearly

weighting the two proportions equally hurts in the α = .5 system, which greatly

underestimates the similarity of the word pair. We hypothesize that rank bias to-

ward the rarer word works because the more frequent words are more susceptible

to ambiguities (car with cable, street, and railway, or trolley), or they may displace

synonyms in collocations (car park, toy car); bias toward the rarer word works best

when the frequent word has a salient ambiguity (as brother and signature do) or

has metaphorical extensions or both (as is the case with asylum), because it allows

modifiers particular to the other sense or extended uses to be forgiven. On the other

hand, when the rarer word is ambiguous, results can be mixed. The word jaguar



52 Gawron and Stephens

Word 1 Rank Word 2 Rank α = .5 α = .97 h δ

automobile 7411 car 100 0.0223 26 0.1469 55 64 0.030

asylum 3540 madhouse 14703 0.0201 23 0.0643 44 55 0.020

coast 708 hill 949 0.0516 49 0.0493 28 19 0.018

mound 3089 stove 2885 0.0399 40 0.0462 25 7 0.017

autograph 10136 signature 2743 0.0204 24 0.0551 32 54 0.009

monk 4051 slave 3022 0.0413 43 0.0437 24 16 0.015

brother 434 monk 4051 0.0206 25 0.0572 37 41 0.005

cemetery 3442 woodland 2726 0.0427 45 0.0571 36 28 0.005

Table 9. Pairs contributing the most improvement in correlations with human

judgments: α = .97, MC/RG word set

in the Wordsim set is a relatively infrequent word ambiguous between a cat-related

sense and a car-related sense, and occurs in pairs that move in both directions:

jaguar 4509 car 100 0.0326 100 0.1282 161 146 0.001

tiger 3473 jaguar 4509 0.0201 52 0.0247 30 168 -0.004

Bias toward the rare word hurts in the second case, evidently because the car-

related modifiers of jaguar penalize the similarity score, moving it in the wrong

direction. Overall, rank bias works best with vectors of very different numbers of

nonzero features.
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5.2 Nearest neighbor task

Our results on the nearest neighbor task clearly establish two patterns: First, nor-

malization correlates with a loss of performance with less frequent words. At the

same time, normalization is responsible for clear gains in performance with the

most frequent words; the best systems at ranks 1500 and above, both in the nearest

neighbor evaluation and in correlating with human judgments, were normalized sys-

tems, and most are Dice family normalized. Second, α-parameterization helps both

with very frequent and very rare words: We saw that α-values below .5 dramatically

improved nearest neighbor performance for Dice-family systems with rarer target

words, while α-values above .5 help with very frequent words.

In fact the improvements with α-skewed systems are monotonic; the optimal

value for α starts well above .5 and drops as word rank increases. Thus, a symmetric

system works best only with mid-frequency words. The following function of rank

roughly captures the optimal value of α at word rank r.

α = e−(.0004r+.44) (14)

Figure 16 plots this function. We built a nearest neighbor system that varies alpha

according to test word rank. That system is not the best at any rank but is the

most consistent performer across all ranks:

We address two questions in this section: Why should the performance of normal-

ized systems decline so precipitously at low ranks, and why does α-normalization

help?

We begin trying to answer this question by pointing to one statistic that strongly
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Fig. 16. A function which returns an approximately appropriate α-value for a rank r.

The function shown is specific to the BNC corpus used here.

correlates with the decline of the normalized systems, as well as with the im-

provement registered in α-parameterized systems: average nearest neighbor rank

(ANNR). For a given set of test nouns T and a given similarity function f , if

NNf (w) is the nearest neighbor of w under f , then the ANNRf of T is:

ANNRf (T) =
1

|T|
∑
w∈T

Rank(NNf (w)) (15)

Table 10 gives the ANNR for all ten core systems for the critical 3000-3500 rank

word set, ordering the systems from lowest average NN rank to highest.

We see that cosine, the worst system by far in this rank range, has an average

nearest neighbor rank of over 60,000, an order of magnitude greater than the nearest

competitor; in contrast, dice† has an ANNR of 4199, and, at the other extreme,

unnormalized dot prod has an ANNR of 500, meaning that, for most words in the

test set, dot prod is choosing an NN that is more frequent. Without normalization,

long vectors have an intrinsic advantage; thus dot prod has a strong tendency to
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Avg nn rank

dot avg 144.5

dot
√
prod 229.7

dot min 403.5

dot prod 499.5

dot
√
prod euc 876.7

dice
√
prod 3917.0

lin 4138.9

dice† 4198.9

dice prod 4885.8

cos 60559.1

Table 10. Average nn rank on the critical 3000-3500 test set

choose frequent words as nearest neighbors (low average rank). We might call this

tendency length bias. Length bias is precisely the ailment that normalization is

intended to cure; but Table 10 shows that the cure can be fatal. Cosine suffers from

an egregious case of what we will call anti-length bias. The nearest neighbor set

is heavily biased in favor of extremely rare words.

Figures 17 and 18 plot ANNR for the various systems evaluated on the nearest-

neighbor task. The two plots demonstrate that ANNR slope is an excellent predictor

of which systems will perform well with less frequent words. In all systems, ANNR

rises for less frequent words, but those for which the rise is slowest are the best

performers at low ranks. Figures 17 shows nine of the ten core systems; the system



56 Gawron and Stephens

with the steepest slope, cosine, has been omitted for readability. The four sys-

tems crowded together near the x-axis are the four unnormalized systems, the best

performers with rare words. The steepest slope shown belongs to dice prod, the

second worst system with rarer words (after cosine), and the system steering a mid-

dle course between the normalized and unnormalized systems is dot
√
prod euc,

the pseudonormalized system which performed better than any normalized system

with rare words. Figure 18 shows the ANNR slopes for the α systems, demonstrat-

ing that lowering α lowers ANNR slope. Again, the lower α was, the better the

system performance on the nearest neighbor task with rarer words was.

The highest slope in Figure 18 belongs to dice prod (dc dp) and is roughly 1.

What an ANNR slope near 1 guarantees is that the system is rewarding neighbors

close in rank to the target word. When there is a viable nearest neighbor in those

ranks, this strategy pays off handsomely. The word jellyfish (found by several sym-

metric Dice systems) is a much better nearest neighbor for starfish than species

(chosen by several unnormalized systems); but a close semantic relative whose re-

lated word whose rank is close to that of the target word may simply not exist, or

if it does exist, the corpus may fail to contain a representative sample. In that case,

the choices of a symmetric Dice normalized system may look random. Consider

brunt, chosen as the nearest neighbor of witness; brunt is the winner because the

two words share a feature highly valued by PMI, −obj-bear, because of phrases

like bear the brunt and bear witness. What the evaluation is showing is that such

poor neighbor choices arise often for rare words. In exactly these cases, we see the

less discriminating unnormalized systems making higher-valued choices.
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Fig. 17. Avg nn rank plotted versus target word rank for four Dice system, the pseudonor-

malized Euclidean system, and four unnormalized systems. As slope declines, performance

at low ranks improves. Systems in decreasing slope order: dice prod (dc dp), dice
√
prod

(dc dpsqrt), dice† (dc dag), Lin (lin), dot
√
prod with Euclidean normalization (dpsq

euc), dot min (dm), dot
√
prod (dpsq), dot avg (davg), and dot prod (dp).

Why does α-parameterization help? Repeating the definition of an α-

parameterized Dice system from Equation 4:

Tα,si(w1, w2) =
σ(w1, w2)

(1− α) · σ(w1, w1) + α · σ(w2, w2)
, (16)

we see that reducing α reduces the recall weight for w2 (the test word), forgiving

more information in w2 not shared with w1 (the target word), making it easier

for long w2 vectors to compete with short vectors in order to qualify as nearest

neighbors. Thus, it is no surprise that ANNR goes down as α goes down: Lowering



58 Gawron and Stephens

0 2000 4000 6000 8000 10000

Rank

0

5000

10000

15000

20000

25000

A
N
N
R

dc_dp

30

15

07

Fig. 18. Average nn rank for the dice prod α systems. The α = .50 system is labeled

dc dp in the legend. As α decreases, the slope of the system line decrease: The lowest

sloping line belongs to the α = .07 system.

α in the nearest neighbor task does much the same thing as raising α did for the

rank-biased α-systems in the task of correlating with human judgments. It allows

words being compared to the word of interest — there the lower ranked word, here

the target word — to be forgiven a few irrelevant modifiers. Note that raising α

for frequent target words has the same effect: It forgives modifiers unshared by

the larger vector. The generalization unifying the better-performing systems on

both the correlation with human judgments and nearest neighbor tasks is this: In

comparing vectors of very different sizes, bias in favor of capturing features of the

shorter vector helps.
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The risk of lowering α with infrequent words is length bias: Words with fre-

quency equal to or lesser than that of the target word may now be undervalued;

but according to the evaluation, this strategy is a win when the target word is less

frequent. Mirroring this, when the target word is very frequent, the risk of raising

α is anti-length bias, yet we saw that for very frequent target words, that strategy

too is a win.

The results of this evaluation give us no real understanding of why rare words

with little or no relation to the target word are overvalued when α = .5. We will

leave this important question largely unanswered. We conclude this discussion with

a few remarks that suggest a direction in which to search for an answer.

First, with PMI, the average feature value drops as vectors grow longer. The

average feature value of a vector of course varies by weight function. The top panel

of Figure 19 plots average feature value as a function of the number of non-zero-

features for PMI, and, lest it be thought this is a special property of PMI, the

bottom panel shows that it is also a property of Z-score. Figure 20 give the plots for

the other two weight functions in our study, T-score and Log SCP. In Figure 19, we

see average feature value dropping as the number of features increases. In Figure 20,

in the case of T-score, average feature value remains roughly the same as the number

of features increases, and in the case of log SCP, the weight rises. As noted in

Section 4.2, the PMI, Z-score, and T-score perform reasonably with some functions,

but log SCP seems to be non-competitive in this application. Generally speaking,

feature weights are intended to be measures of statistical significance. Thus, it is

perhaps not surprising that feature weights might rise with rarer words. Whether
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this is a ultimately desirable property for a weight function is unclear, but it is

clear that assigning higher values for rarer words is a property of some important

significance measures.17

In Euclidean normalization, the values in large vectors are divided by a large

number, and the values in small vectors values by a small number, so that the

values of small vectors grow relative to those in large vectors. This distortion is

worsened when the small vectors start with higher average values. The most ex-

treme effects of this distortion are seen with cosine, where, with rarer target words,

we see an extreme preference for rare nearest neighbors. Thus the precipitous per-

formance decline of cosine seen in Figure 4 can be traced to combining cosine’s

inherent distortion with a weight measure (PMI) which worsens it. This analysis

of cosine’s problems receives strong support from the fact that dot
√
prod euc

ameliorates the problem. While cosine is the worst performer with infrequent words,

dot
√
prod euc is one of the best. Taking the square roots of Euclidean normal-

ized values reduces initial differences in average feature values.

On the other hand, with Dice-normalized systems, the effect of rising average

feature values is to make longer vectors more competitive. Looking at (16), we see

that for a given amount of shared information (σ(w1, w2)), a longer w2 vector will,

all things being equal, lose out to a shorter candidate, but if things are not equal,

that is, if the shorter vector has higher average values, then the gap between them

will shrink. That increasing the advantage of longer vectors helps is suggested by

Figure 17, which shows us that better performing systems have higher ANNRs.

However, the results of our evaluation show that symmetric Dice-family systems
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Fig. 19. Average feature value as a function of vector length for PMI and Z-score.

Average value falls for both.

do not increase the advantage of longer vectors enough; they still underperform

with infrequent words, suggesting .5 is not a high enough α-value to overcome
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Average value remains roughly constant for T-score; and actually rises for Log SCP.

the advantage of shorter vectors with these target words. Figure 18 shows us that

skewing to α < .5 further increases the advantage of longer vectors, and that

correlates with improved NN scores for these words.
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If the average value of features actually grew with shorter vectors, even more

skewing would be needed to advantage longer vectors. This is what seems to be

happening with Log SCP. Figure 20 shows that, exceptionally, average value rises

with vector size with Log SCP, and we saw in Figure 9 an α value of .04 achieved

the best performance on the 1-500 dataset. This was the only case where an α-value

less than .5 was helpful with frequent words.

5.3 Synonym detection and distribution prediction

At this point the results across word ranks seen in the synonym detection and

distribution prediction tasks should not be surprising.

The synonym detection task is really a smaller scale version of the nearest neigh-

bor task. Instead of having its similarity computed for all the words in the lexicon,

the target word has its similarity computed for a set of four test words, with the

largest scoring word chosen as the synonym. All the arguments about quality of

nearest neighbor choice carry over to this task; and the results basically seem to

mirror those in the nearest neighbor experiment.

The distribution prediction task is inherently asymmetric, which is why only

skewed systems are competitive. The task is to measure how well nearest neighbors

capture the distribution of the target word, and the converse relation is irrelevant.

Thus, lowering α, which skews the system toward recall of the target word’s at-

tributes was helpful. So much was already apparent in the results reported by Lee

for this task. What our results show that is novel is that the benefits of asymmetry

increase (and the degree of asymmetry that is beneficial increases) as target nouns
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grow rarer. As with the nearest neighbor task, α = 0 was seen to obtain the best

results with rarer words; with this task however, the α = 0 system became the best

not just with rare words but even with words of medium frequency.

We saw in equation (7) that an α = 0 systems will choose the same nearest

neighbors as its unnormalized counterpart. Since the similarity computation in our

distribution prediction task is just the choice of the 100 nearest neighbors of the

test noun, our dice prodα=0 system would make the same distribution predictions

as a dot prod system. Thus we find that the best performer on this task, at least

on words of mid to low frequency, is essentially an unnormalized system.

This is strongly reminiscent of Lee’s key result. Lee shows that an α-skew model

depends only on the support of w1 and w2, which we have been notating w1 ∩w2.

In particular, she notes that

α-skew(w1, w2) = − log (1−α) +
∑

f∈w1∩w2

w1[f ] · (logw1[f ]

− log (α · w2[f ] + (1− α)w1[f ])

+ log (1− α)).

(17)

Since dot prod, the unnormalized system that performed best here, also depends

only on w1 ∩ w2, we have confirming evidence that the best distribution predictor

should be a function of the support of w1 and w2.

Since both the dot prod function and α-skew increase monotonically with the

mass of the support, we conjecture that the improvement achieved by our system

has less to do with the variety of asymmetric model used than with the weight

function determining the mass of the support. It may be that it pays to take into



Word Similarity 65

account the probabilities of the context words (P (f)) in the weight function, as

PMI does (see Table 4), and as Lee’s conditional probabilities (P(f | w)) do not.

6 Conclusion

We have achieved two significant results. We have shown that (a) classic normaliza-

tion strategies applied to distributional systems fail to solve the problem of how to

compare vectors of very different dimensionality; and (b) that a family of asymmet-

ric Tversky-ratio models using Dice-style normalization provides a partial solution

to this problem.

This work focuses on the problem of how to maximize the information available

in sparse vectors, with the data set fixed, and shows that, for some tasks, at least,

α-parameterized functions make better use of that information than their sym-

metric counterparts. Having said that, it can be argued that all of the tasks used

for evaluation here have a certain inherent asymmetry. Score comparisons in the

nearest neighbor, synonymy, and distribution prediction tasks all involved maxi-

mizing the similarity of a set of candidates to a fixed test word. The success of

the α-parameterized systems on the human judgment task, we argued, was because

emphasizing the proportion of its features of the rare word shared helped zoom us

in on the particular sense relevant to scoring high-similarity pairs. Arguably, that

simulates something humans do, but computationally, rank-biased similarity is a

rather special strategy not suitable for all similarity applications. Thus, our suc-

cesses with asymmetric similarity are all very task specific. This, too, was a feature

of the results Tversky was trying to model. Clearly, humans compute the similarity
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of China to Korea differently than they do the similarity of Korea to China. They

interpret that particular task as asymmetric.

There are several directions in which to move in future work. First, the experi-

ments here have focused entirely on distributional approaches based on syntactic

models; it is important to explore whether similar sparsity effects plague context-

window based models, and if they do (as we suspect they do), will asymmetry

apply with equal success? Second, comparison of the approach here with that in

Lee (1999) and Weeds and Weir (2005) shows that different dimensions of asym-

metry are explored in the different approaches. The approach pursued here intro-

duces asymmetry into the normalization calculation. Lee and the additive models

of Weeds and Weir introduce asymmetry into support computation (computing

the aggregate weight of w1 ∩w2). These are orthogonal and potentially compatible

strategies that could be explored together. Third, we have not investigated the in-

teractions of feature pruning with sparsity, and the issue of how performance even

with very rare words might be improved with the right kind of feature-pruning

deserves a careful look. Finally, we need to better define the set of tasks for which

asymmetry helps, or perhaps investigate the ways in which it can be better adapted

to new tasks. Therefore, experimenting with new tasks like clustering is crucial.

Appendix: Proof that Dice family functions are monotonic on

Jaccard-family functions

We show that

σdice(w1, w2) > σdice(w3, w4) (18)
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if and only if

σjacc(w1, w2) > σjacc(w3, w4) (19)

We first reformulate Dice and Jaccard in terms of ratios k1 and k2. For Dice we

have

σdice(w1, w2) =
2 · σ(w1, w2)

σ(w1, w1) + σ(w2, w2)

=
2

σ(w1, w1)

σ(w1, w2)
+
σ(w2, w2)

σ(w1, w2)

=
2

k1 + k2
k1 =

σ(w1, w1)

σ(w1, w2)
, k2 =

σ(w2, w2)

σ(w1, w2)
(20)

Similarly for Jaccard we have

σjacc(w1, w2) =
σ(w1, w2)

σ(w1, w1) + σ(w2, w2)− σ(w1, w2)
=

1

k1 + k2 − 1
(21)

So our reformulated proof goal is to show:

2

k1 + k2
>

2

k3 + k4
iff

1

k1 + k2 − 1
>

1

k3 + k4 − 1
(22)

The following steps complete the proof from left to right and all steps are reversible.

The steps rely on all the k being positive, which is guaranteed if all vector values

are positive, a standard assumption.

1.
2

k1 + k2
>

2

k3 + k4

2. 2(k3 + k4) > 2(k1 + k2)

3. k3 + k4 > k1 + k2

4. k3 + k4 − 1 > k1 + k2 − 1

5.
1

k1 + k2 − 1
>

1

k3 + k4 − 1

(23)
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Notes

1 Throughout this study, the nth most frequent noun will be referred to as the noun

of noun rank n.

2 We owe great thanks to an anonymous reviewer of an early version of this paper for

pointing out the relevance and importance of Tversky’s work, as well as to Jimenez et al.

(2012), who have recently emphasized its continuing relevance.

3 In a slight abuse of notation, we define A ∩ B as the set of features having positive

values for both A and B:

A ∩ B = {f | A[f ] > 0 and B[f ] > 0} (24)

4 Tversky also notes the relationship of his models to the model in Sjoberg (1972), which

is equivalent to the earlier Jaccard index Jaccard (1912). Jaccard-family normalization is

definable as follows:

σjacc(w1, w2) =
σ(w1, w2)

σ(w1, w1) + σ(w2, w2)− σ(w1, w2)
(25)

Assuming that nonzero feature values are positive, and that the SI operation is min, this

definition yields the min/max formulation of Jaccard used by Grefenstette (1994) and

Dagan (2000): ∑
f min(w1[f ], w2[f ])∑
f max(w1[f ], w2[f ])

(26)

Generalizing the result from van Rijsbergen 1979 for the original set-specific versions of

Dice and Jaccard, it can be shown that all of the Dice family functions are monotonic in
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Jaccard [proof in appendix], that is

σjacc(x, y) > σjacc(x′, y′) iff σdice(x, y) > σdice(x
′, y′) (27)

Thus the choice between Dice and Jaccard family normalization makes no difference as

far as their performance as a similarity measure goes.

5 Thus the choice of similarity functions studied here is not intended in any way to

be exhaustive. We have taken a small slice of functions from the literature, in order to

study normalization of particular (important) kinds in the setting of limited data, and to

explore a particular asymmetric generalization of Dice-family functions.

6 Curran refers to the formula we call Z-score as T-Test, while reporting that function to

be the best in his study. We follow Church and Hanks (1990), Manning and Schütze (1999),

Weeds and Weir (2005), and Evert (2008) in adopting the more standard designation.

7 For reasons of space, we report PMI results only for the other evaluations.

8 These numbers have been updated with more recent results, as reported at http://

aclweb.org/aclwiki/index.php?title=RG-65_Test_Collection_(State_of_the_art).

9 http://ixa2.si.ehu.es/ukb/

10 Available at http://www.cs.technion.ac.il/ gabr/resources/code/wikiprep/wikipedia-

051105-preprocessed.tar.bz2.

11 Available at https://github.com/faraday/wikiprep-esa/.

12 The dataset is available at http://www.cs.cmu.edu/~dayne/wbst-nanews.tar.gz.

13 Lee refers to this as a pseudo-word sense disambiguation task.

14 The value .97 is shown here because it yields the best correlations overall with human

judgments, but any value above .5 improves correlations. This point is discussed further

in Section 5.1.

15 The pseudonormalized system dot
√
prod with Euclidean normalization is actually

better with less frequent words, as shown in the top panel of Figure 3, but for purposes of

the present discussion we distinguish normalized and pseudonormalized systems. We will

return to the reasons for this superior performance in the discussion section.

16 The approximation is based on the formula for computing Spearman’s R with no ties.

If gold, test, and baseline are the gold, test, and baseline ranks for a test item, and n is

the number of items, then the improvement on that item is:

6 ∗ [(baseline− gold)2 − (test− gold)2]

n ∗ (n2 − 1)
(28)
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17 Evert (2008), cited in Footnote 6, argues that Z-score overestimates significance with

low frequency events (expected count < 1), and Bouma (2009) has an excellent discussion

of the same problem for PMI. If both concerns are valid, this would predict the falling

average values both functions show in Figure 19.
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