Phrase Structure

A formal hypothesis for representing constituency

Constituents are hierarchically organized

Rules to represent hierarchical structure

Rules to represent hierarchical structure

Rules to represent hierarchical structure

$XP \rightarrow (YP) X (ZP+)$

$XP \rightarrow (YP) X (ZP+)$

$XP \rightarrow (YP) X (ZP+)$

the name of the constituent

$XP \rightarrow (YP) X (ZP+)$

the name of the constituent

"consists of"

$XP \rightarrow (YP) X (ZP+)$

the name of the constituent

"consists of"

elements inside of constituent IN ORDER from Left to Right

$XP \rightarrow (YP) X (ZP+)$

the name of the constituent elements in parentheses are optional

"consists of"

elements inside of constituent IN ORDER from Left to Right

$XP(\rightarrow)$ (YP) X_{κ} (ZP+)

the name of the constituent

elements without parentheses are obligatory elements in parentheses are optional

"consists of"

elements inside of constituent IN ORDER from Left to Right

+ means
you can
have as
many as
you need

the name of the constituent

elements without parentheses are obligatory elements in parentheses are optional

"consists of"

elements inside of constituent IN ORDER from Left to Right

ZP-

An Example: The Phrase Structure rule for NPs

• This will be our first case study:

- ♦ We will propose a rule,
- Test it against evidence, and repeatedly revise it until we get a more adequate picture of what the rule is.
- Along the way, we'll be practicing tree structure diagrams, both creating them and reading them.
- We'll then extend the analysis of NPs to other phrases.

Questions to Ask:

- 1. What *must occur* in an NP?
- 2. What is optional in an NP? (Notation: inside parentheses)
- 3. What can *repeat* in an NP? (Notation: +)
- 4. What is the *relative order* of these elements?

• A noun phrase can be just a bare noun:

A noun phrase can be just a bare noun:
(_{NP} John] left (cf. [_{NP} the man] left)

A noun phrase can be just a bare noun:

- \diamond [_{NP} John] left (cf. [_{NP} the man] left)
- So all other material other than the Noun itself will be optional.

- A noun phrase can be just a bare noun:
 - [_{NP} John] left (cf. [_{NP} the man] left)
 - So all other material other than the Noun itself will be optional.
 - The N in an NP is called the *Head* of the NP, (usually the head is the only obligatory part of a phrase -- there are some exceptions)

- A noun phrase can be just a bare noun:
 - [_{NP} John] left (cf. [_{NP} the man] left)
 - So all other material other than the Noun itself will be optional.
 - The N in an NP is called the *Head* of the NP, (usually the head is the only obligatory part of a phrase -- there are some exceptions)
 - \diamond NP \rightarrow N

- A noun phrase can be just a bare noun:
 - ◇ [_{NP} John] left (cf. [_{NP} the man] left)
 - So all other material other than the Noun itself will be optional.
 - The N in an NP is called the *Head* of the NP, (usually the head is the only obligatory part of a phrase -- there are some exceptions)
 - \diamond NP \rightarrow N

NP | N John

Let's make sure that the N is really obligatory:

*The are really valuable*Very old are really valuable*Very old from France are really valuable

 NPs can have an optional determiner and adjective phrases.

 You are allowed one determiner and as many AdjPs as you like:

 NPs can have an optional determiner and adjective phrases.

 You are allowed one determiner and as many AdjPs as you like:

[slippers]

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]
 - O [pink slippers]

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]
 - O [pink slippers]
 - [the pink slippers]

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]
 - O [pink slippers]
 - [the pink slippers]
 - O [pink fluffy slippers]

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]
 - O [pink slippers]
 - [the pink slippers]
 - O [pink fluffy slippers]
 - [the pink fluffy slippers]

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]
 - O [pink slippers]
 - [the pink slippers]
 - O [pink fluffy slippers]
 - [the pink fluffy slippers]
 - *the a slippers

 NPs can have an optional determiner and adjective phrases.

- You are allowed one determiner and as many AdjPs as you like:
 - [slippers]
 - [the slippers]
 - O [pink slippers]
 - [the pink slippers]
 - O [pink fluffy slippers]
 - [the pink fluffy slippers]
 - *the a slippers

$NP \rightarrow (D) (AdjP+) N$

 $NP \rightarrow (D) (AdjP+) N$

NPs also allow as many optional PPs following the N as you like:

- The book of poems
- The book of poems with the red cover
- The book of poems with the red cover from New York

 NPs also allow as many optional PPs following the N as you like:

- The book of poems
- The book of poems with the red cover
- The book of poems with the red cover from New York

 $NP \rightarrow (D) (AdjP+) N (PP+)$

• NPs can also be modified by clauses (CPs):

- The fact [that I like haggis]
- The book of poems with the red cover [that I bought in NYC]

• NPs can also be modified by clauses (CPs):

- The fact [that I like haggis]
- The book of poems with the red cover [that I bought in NYC]

$NP \rightarrow (D) (AdjP+) N (PP+) (CP)$

\bigcirc NP → (D) (AdjP+) N (PP+) (CP)

\bigcirc NP → (D) (AdjP+) N (PP+) (CP)

"NP consist of"

O NP → (D) (AdjP+) N (PP+) (CP)

"NP consist of"

"an optional determiner" (brackets mean optional)

• NP → (D) (AdjP+) N (PP+) (CP)

"NP consist of"

"an optional determiner" (brackets mean optional)

> "followed by any number of optional Adjective Phrases" (+= any number of)

\bigcirc NP → (D) (AdjP+) N (PP+) (CP)

"NP consist of"

"an optional determiner" (brackets mean optional) "followed by a noun" (the *head*.)

"followed by any number of optional Adjective Phrases" (+= any number of)

\bigcirc NP → (D) (AdjP+) N (PP+) (CP)

"NP consist of"

"an optional determiner" (brackets mean optional) "followed by a noun" (the *head*.)

> "followed by any number of optional Prepositional phrases"

"followed by any number of optional Adjective Phrases" (+= any number of)

"Followed by an optional CP"

$\bigcirc \text{NP} \rightarrow (\text{D}) \quad (\text{AdjP+}) \quad \text{N} \qquad (\text{PP+}) \quad (\text{CP})$

"NP consist of"

"an optional determiner" (brackets mean optional) "followed by a noun" (the *head*.)

> "followed by any number of optional Prepositional phrases"

"followed by any number of optional Adjective Phrases" (+= any number of)

\bigcirc NP → (det) (AdjP+) N (PP+)(CP)

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- AdjP \rightarrow Adj
- John left quickly
- \circ AdvP \rightarrow Adv

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- \circ AdjP \rightarrow Adj
- John left quickly
- $\bigcirc \mathsf{AdvP} \rightarrow \mathsf{Adv}$

- John left [rather quickly]
- the [very red] lipstick
- AdjP \rightarrow (AdvP) Adj
- AdvP \rightarrow (AdvP) Adj

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- AdjP \rightarrow Adj
- John left quickly
- \circ AdvP \rightarrow Adv

- John left [rather quickly]
- the [very red] lipstick
- AdjP \rightarrow (AdvP) Adj
- AdvP \rightarrow (AdvP) Adj

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- AdjP \rightarrow Adj
- John left quickly
- \circ AdvP \rightarrow Adv

- John left [rather quickly]
- the [very red] lipstick
- AdjP → (AdvP) Adj
- AdvP \rightarrow (AdvP) Adj

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- \circ AdjP \rightarrow Adj
- John left quickly
- \circ AdvP \rightarrow Adv

- John left [rather quickly]
- the [very red] lipstick
- AdjP \rightarrow (AdvP) Adj
- AdvP \rightarrow (AdvP) Adj

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- \circ AdjP \rightarrow Adj
- John left quickly
- \circ AdvP \rightarrow Adv

- John left [rather quickly]
- the [very red] lipstick
- AdjP \rightarrow (AdvP) Adj head AdvP AdjP • AdvP \rightarrow (AdvP) Adj Adj Adv AdvP AdvP quickly red Adv Adv rather head very

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- \circ AdjP \rightarrow Adj
- John left quickly
- \circ AdvP \rightarrow Adv

But they can also be modified by AdvPs:

- John left [rather quickly]
- the [very red] lipstick
- $AdjP \rightarrow (AdvP) Adj$ • $AdvP \rightarrow (AdvP) Adj$ AdvP Adv Adv AdvP AdvP Adv AdvP Quickly Adv AdvAd

Adj

red

Adjectives and Adverbs can stand on their own as phrases:

- the [red] lipstick
- AdjP \rightarrow Adj
- John left quickly \bigcirc
- \bigcirc AdvP \rightarrow Adv

- John left [rather quickly]
- the [very red] lipstick
- AdjP \rightarrow (AdvP) Adj AdvP • AdvP \rightarrow (AdvP) Adj Adv AdvP

Adjective/Adverb Phrases (APs)

©Andrew Carníe, 2006

Adjective/Adverb Phrases (APs)

A situation easily confused:

 The big yellow balloon
 The very yellow balloon
 What does 'big' modify? What does 'very' modify?

Adjective/Adverb Phrases (APs)

A situation easily confused:

 The big yellow balloon
 The very yellow balloon
 What does 'big' modify? What does 'very' modify?

The Principle of Modification

The Principle of Modification

○ if an XP modifies some head Y, then XP must be Y's sister

The Principle of Modification

○ if an XP modifies some head Y, then XP must be Y's sister

O These generally consist of a Preposition and an NP:

- up the road
- on the video screen
- under the avocado
- \bigcirc PP→P NP

O These generally consist of a Preposition and an NP:

- up the road
- on the video screen
- under the avocado
- \bigcirc PP→P NP

Is the NP in a PP optional?

- I threw the garbage out
- The construction workers blew the building up
- I haven't seen him before
- \bigcirc PP→P (NP)

Is the NP in a PP optional?

- I threw the garbage out
- The construction workers blew the building up
- I haven't seen him before
- \bigcirc PP→P (NP)

This is controversial: not everyone agrees these are prepositions.

Verb Phrases (VP)
Verbs by themselves: Marko [arrived] Susan [sang] VP→ V

Verbs by themselves:

- Marko [arrived]
- Susan [sang]
- $\circ \mathsf{VP} \rightarrow \mathsf{V}$

Verbs can be modified by adverbs:

- Marko [often sang]
- Susan [sang beautifully]
- Luis [often sang beautifully]
- VP \rightarrow (AdvP+) V (AdvP+)

• Verbs modified by PPs:

- Marko sang [though a microphone]
- Susan sang [to her parents] beautifully
- Susan sang beautifully [to her parents]
- $VP \rightarrow (AdvP+) V (AdvP+) (PP+) (AdvP+)$

- Verbs modified by PPs:
 - Marko sang [though a microphone]
 - Susan sang [to her parents] beautifully
 - Susan sang beautifully [to her parents]
 - $VP \rightarrow (AdvP+) V (AdvP+) (PP+) (AdvP+)$
- O Verbs with an NP object:
 - Marko sang [a song] to his parents beautifully
 - VP \rightarrow (AdvP+) V (NP) (AdvP+) (PP+) (AdvP+)

- Verbs modified by PPs:
 - Marko sang [though a microphone]
 - Susan sang [to her parents] beautifully
 - Susan sang beautifully [to her parents]
 - $VP \rightarrow (AdvP+) V (AdvP+) (PP+) (AdvP+)$
- O Verbs with an NP object:
 - Marko sang [a song] to his parents beautifully
 - VP \rightarrow (AdvP+) V (NP) (AdvP+) (PP+) (AdvP+)

Verbs with an NP object and NP indirect object:

- Marko sent [his parents] [a package].
- $VP \rightarrow (AdvP+) V (NP) (NP) (AdvP+) (PP+) (AdvP+)$

- Verbs modified by PPs:
 - Marko sang [though a microphone]
 - Susan sang [to her parents] beautifully
 - Susan sang beautifully [to her parents]
 - $VP \rightarrow (AdvP+) V (AdvP+) (PP+) (AdvP+)$
- O Verbs with an NP object:
 - Marko sang [a song] to his parents beautifully
 - VP \rightarrow (AdvP+) V (NP) (AdvP+) (PP+) (AdvP+)

Verbs with an NP object and NP indirect object:

- Marko sent [his parents] [a package].
- VP \rightarrow (AdvP+) V (NP) (NP) (AdvP+) (PP+) (AdvP+)
- Verbs with a Sentence (CP) Object:
 - Fred said [Marko sang a song] with some derision yesterday
 - Fred asked Bill [if his T-shirt was inappropriate]
 - VP \rightarrow (AdvP+) V (NP) ({NP/CP}) (PP+) (AdvP+)

 $VP \rightarrow (AdvP+) V (NP)(\{NP/CP\})(AdvP) (PP+) (AdvP+)$

©Andrew Carníe, 2006

 Sentences consist of a subject (NP) and a predicate (VP). In English, neither is optional (although in other languages the subject may be omitted)

Sentences consist of a subject (NP) and a predicate (VP). In English, neither is optional (although in other languages the subject may be omitted)
 TP → NP VP

Sentences consist of a subject (NP) and a predicate (VP). In English, neither is optional (although in other languages the subject may be omitted)
 TP → NP VP

 TP
 VP

 NP
 VP

 N
 V

 N
 V

 Nraci
 ate

 D
 N

 the
 pizza

 Sentences may have an optional auxiliary or modal verb (of the Category T)

Sentences may have an optional auxiliary or modal verb (of the Category T)
 TP → NP (T) VP

Sentences may have an optional auxiliary or modal verb (of the Category T)
 TP → NP (T) VP

Sometimes clauses can function as the subject or object of other clauses.

- I asked [if Maria would eat the spaghetti]
- I think [that Maria decked the Janitor]
- [That Maria decked the Janitor] is obvious

 Sometimes clauses can function as the subject or object of other clauses.

I asked [if Maria would eat the spaghetti]

- I think [that Maria decked the Janitor]
- That Maria decked the Janitor] is obvious

Words like "that" and "if" are called complementizers.
 ♦ CP→(Comp) TP

VP→(AdvP+) V ({NP/CP}) (PP+) (AP+) TP →{NP/CP} (T) VP

 Note the structure of the following three simplified rules (I've left out the material that isn't relevant to the point I'm making):

- VP → V (CP)
- TP \rightarrow NP (T) VP
- CP \rightarrow (Comp) TP

 VP is only ever a mother to CP' (<u>never</u> TP), and CP' is only ever a mother to Comp and TP (<u>never</u> NP <u>nor</u> VP)

So with the following rules, you can draw only certain trees
 VP→ V (CP)
 TP →NP (T) VP
 CP → (Comp) TP

So with the following rules, you can draw only certain trees
 VP→V(CP)
 TP→NP(T) VP
 CP→(Comp) TP

An obvious but important point

Your trees and your rules must correspond to one another.

 When you are drawing your trees (we'll do a lot of practice in a week or so) you must make sure that the tree is consistent with the rules.

 Language is infinite: you can say sentences that have never been said before.

 Language is infinite: you can say sentences that have never been said before.
 NP → N PP

 Language is infinite: you can say sentences that have never been said before.

- $\circ \mathsf{NP} \rightarrow \mathsf{N} \mathsf{PP}$
- $\bigcirc PP \rightarrow P NP$

 Language is infinite: you can say sentences that have never been said before.

 $\begin{array}{c|c} \bullet & \mathsf{NP} \rightarrow \mathsf{N} & \mathsf{PP} \\ \bullet & \mathsf{PP} \rightarrow \mathsf{P} & \mathsf{NP} \end{array}$
Recursion

 Language is infinite: you can say sentences that have never been said before.

 $\begin{array}{c|c} & \mathsf{NP} \rightarrow \mathsf{N} & \mathsf{PP} \\ \hline & \mathsf{PP} \rightarrow \mathsf{P} & \mathsf{NP} \\ \end{array}$

Recursion

 \circ NP \rightarrow N (PP)

 $PP \rightarrow P NP$

 Language is infinite: you can say sentences that have never been said before.

Recursion

 Language is infinite: you can say sentences that have never been said before.

 $\begin{array}{c|c} & \mathsf{NP} \to \mathsf{N} & (\mathsf{PP}) \\ \hline & & \mathsf{O} & \mathsf{PP} \to \mathsf{P} & \mathsf{NP} \\ \end{array}$

This property is called Recursion

etc!!!!

OAndrew Carnie, 2006

Summary

Constituency & hierarchical structure is captured by phrase structure rules (PSRs)

 Constituency & hierarchical structure is captured by phrase structure rules (PSRs)

These rules also capture the recursive (infinite) property of language.

OAndrew Carnie, 2006

- $AdvP \rightarrow (AdvP) Adv$
- $AdjP \rightarrow (AdvP) Adj$
- \bigcirc PP \rightarrow P (NP)
- NP \rightarrow (D) (AdjP+) N (PP+) (CP)
- VP \rightarrow (AdvP+) V (NP)({NP/CP}) (AdvP+) (PP+) (AdvP+)
- TP \rightarrow {NP/CP} (T) VP
- $CP \rightarrow (C) TP$

PSRs of English

to be significantly revised

- AdvP \rightarrow (AdvP) Adv
- $AdjP \rightarrow (AdvP) Adj$
- \bigcirc PP \rightarrow P (NP)
- NP \rightarrow (D) (AdjP+) N (PP+) (CP)
- VP \rightarrow (AdvP+) V (NP)({NP/CP}) (AdvP+) (PP+) (AdvP+)
- TP → {NP/CP} (T) VP

• $CP \rightarrow (C) TP$

PSRs of English