	Change of state & Causation		

Lexical Representations http://gawron.sdsu.edu/semantics

Semantics

Jean Mark Gawron

San Diego State University, Department of Linguistics

April 20, 2021

・ロト ・ 同ト ・ ヨト ・

Overview

・ロト ・四ト ・ヨト ・ヨト

Introduction	Agentivity	Change of state & Causation			
●000	000	000000	00000	0000000000	

Outline

- Agentivity
- 3 Change of state & Causation

Introduction	Agentivity	Change of state & Causation		
0000				

Lexical semantics

Relatedness of predicates with different parts of speech

verbs/adjectives

- a. the soup is cool.
- b. the soup cooled.
- Preposition choice: John had a glass. He ...
 - ... gave it to/?with/?from Mary.
 - 2 ... received it ?to/?with/from Mary.
 - S ... broke it ?to/with/from a hammer.
 - ... broke it against a hammer.

Semantic generalizations behind valence (syntactic frames)

verb classes

1	(a.	loaded the truck with hay.
John {	b.	sprayed the wall with paint.
l	c.	smeared the trap with honey.
John {	(а.	loaded hay onto the truck.
	b.	sprayed paint onto the wall.
	C.	smeared honey onto the trap.

イロト イボト イヨト イヨト

Introduction	Agentivity	Change of state & Causation			
0000	000	000000	00000	0000000000	

Linking theory: predicting subj and obj

Animate Subject factors [strong Agentivity]

- A has volition. (A murdered P)
- A has control over involvement in an event or state. (A caught P)
- A is willful initiator of event or state (A grasped P)
- A has consciousness, sentience, perception. (A saw P)

Other Subject factors [weak Agentivity]

- A is initiator, instigator, or causer of event (A dried P)
- A is source of force directed at another entity. (A attracted P)
- A moves, coming into contact with a stationary entity. (A hit P)
- A moves or is located relative to an entity which is stationary (figure/ground) (F hovered over G)

	Agentivity	Change of state & Causation			
0000	000	000000	00000	0000000000	

Outline

< ロ > < 回 > < 回 > < 回 > < 回 >

Agentivity 0●0	Change of state & Causation		

do (be do be do)

The primitive do exists primarily to distinguish primitive processes from primitive states.

process v. state

state the branch is strong process the branch fell the branch swayed the flag fluttered STRONG(b) do(b, [FALL(b)]) do(b, [SWAY(b)])

Agentivity 00●	Change of state & Causation		

DO

- Volition/ intension of x to do y
- 2 John jumped.
- **3** DO(J, [do(J, [JUMP(J)])])
- John fell.
- O do(J, [FALL(J)])
- John is smart.
- Ø SMART(J)

≣⇒

▲ 伊 ▶ ▲ 臣

	Agentivity	Change of state & Causation			
0000	000	00000	00000	00000000000	

Outline

	Agentivity	Change of state & Causation			
0000	000	00000	00000	0000000000	

BECOME

Inchoatives

- (a) The glass broke.
- (b) BECOME [BROKEN(G)]
- (c) The glass cooled.
- (d) BECOME [COOL(G)]
- (e) The glass melted.
- (f) BECOME [MELTED(G)]

< 一 一 一 ト 、 、 三 ト

	Agentivity	Change of state & Causation			
0000	000	00000	00000	00000000000	

Inchoatives: $Adj \rightarrow Verb$

Inchoatives

- (a) The glass broke.
- (b) BECOME [BROKEN(G)]
- (c) The glass cooled.
- (d) BECOME [COOL(G)]
- (e) The sky darkened.
- (f) BECOME [DARK(S)]
- (g) The nose cone slowly heated.
- (h) BECOME [HOT(NC)]

- (a') The glass was broken.
- (b') BROKEN(G)
- (b') The glass was cool.
- (d') COOL(G)
- (e') The sky was dark.
- (f)' DARK(S)
- (g') The nose cone was hot.
- (h') HOT(NC)

Introduction A	gentivity (Change of state & Causation			References
0000 0	00 0	000000	00000	0000000000	

Causative verbs

CAUSE + Inchoative

- (a) John broke the glass. (intentionally)
- (b) DO(J, [do(J) CAUSE [BECOME [BROKEN(G)]])
- (c) The breeze cooled the glass. (breeze nonvolitional participant in causing event)
- (d) do(B) cause become [COOL(G)]
- (d') B CAUSE BECOME [COOL(G)] text allows this, distinction not important
- (e) The fall broke the glass.
- (f) F CAUSE BECOME [BROKEN(G)]

	Agentivity	Change of state & Causation			
0000	000	000000	00000	00000000000	

put/give/kill as causatives

put type

- a. x put y on z
- b. x Cause [BE-AT(y, ON(z))]
- c. x gave y to z
- d. x Cause [poss(y, z)]
- d'. x cause [be-at_{poss}(y, z)]
- e. x kill y (= x *deadened y)
- f. x CAUSE [BECOME(DEAD(y))]

- 4 回 ト 4 三 ト 4 三 ト

	Agentivity	Change of state & Causation			
0000	000	00000	00000	0000000000	

Summary

Dowty analysis

State	STATE(X)	COOL(S)
Process	do(x, [PROCESS(x)])	do(f, [flutter(x)])
Achievement	BECOME $[STATE(X)]$	BECOME $[COOL(S)]$
Accomplishment	X CAUSE	J CAUSE
	[BECOME [STATE(X)]]	[BECOME [COOL(S)]]

・ロト ・西ト ・ヨト ・ヨト

Agentivity 000	Change of state & Causation	Location ●0000	

Outline

Agentivity 000	Change of state & Causation	Location 0●000	

Definition of location pred

A location predicate locates one object in space (the FIGURE) with respect to another (the GROUND). Simple clauses with location predicates are **states**. The grounds are typically realized in Locative PPs. *John* is the figure in all the examples below. [We follow the text in Section 10.4.4, rich ontology version (60), p. 226]

Location phrases

	(а.	behind the store	
	b.	under the bridge	
John stood 🔇	с.	on the stage	
	d.	* from the house.	Path phrase!
	(e.	* to the store.	Path phrase!

ces

Other location predicates

The verbs are location predicates. Words identifying spatial relations are in italics.

- a. Lassie lay on the bed.
- b. The obelisk occupies *the top of* the hill.
- b'. The obelisk is *on top of* the hill.
- c. The lectern is *at the front of* the room.
- d. The power cable lay *along the edge of* canal.
- e. The ceremonial garlands *surround* her neck.
- f. The children remained *in* the city.

<u>0000</u> 000 000000 000000000000000000000		Agentivity	Change of state & Causation	Location		
	0000	000	000000	00000	0000000000	

LCS for location

Location function

- a. Lassie lay on the bed. BE-AT-LIE(LASSIE,ON(BED))
- b. The lectern is at the front of the room. BE-AT(LECTERN,FRONT(ROOM))
- c. John is at the lectern. BE-AT(JOHN,AT(LECTERN)) BE-AT(JOHN, LECTERN)
- d. John remained at the lectern. BE-AT-REMAIN(JOHN,LECTERN) presupposition: He was there before....

```
ON(BED)
```

```
FRONT(ROOM)
```

AT(LECTERN) AT(LECTERN) implicit!

Agentivity 000	Change of state & Causation	Location 0000●	

Become located

Location preds are states; combine with ${\tt BECOME}$

Examples

- a. Lassie arrived in Boston. BECOME [BE-AT(LASSIE,IN(BOSTON))]
- b. The ball landed behind the couch. BECOME [BE-AT(BALL, BEHIND(COUCH))] What presupposition is missed?
- c. The branch hit the window BECOME [BE-AT(BRANCH, WINDOW)]
- d. The climbers reached the summit. BECOME [BE-AT(CLIMBER, SUMMIT)]

	Agentivity	Change of state & Causation	Motion	
0000	000		•0000000000	

Outline

Agentivity 000	Change of state & Causation	Motion 0●000000000	

Definition of motion pred

A motion predicate entails motion and takes the full range of path phrases:

Path phrases

	(a.	to the store
John walked	b.	from the house.
John warked s	с.	through the tunnnel
	d.	from the house to the store through the tunnnel.

distance phrases

∃ ► < ∃ ►</p>

Agentivity 000	Change of state & Causation	Motion 00●00000000	

Manner of motion [pattern]

go, come, run, walk, march, gallop, limp, fly, ...

Two analyses [one rejected!]

- (a) Causative do(x, [RUN(x)]) CAUSE
 - [BECOME [BE-AT(X, Y)]]

(b) Motion pred $do(x, [GO-RUN(x,F_{PATH}(Y))])$

Analysis (b): Van Valin and LaPolla (1997), rejecting Dowty, van Valin (1990). We follow Van Valin and LaPolla (1997) and the text in adopting analysis (b) for motion predicates. The presence of GO or one of its specializations licenses path phrases (and path measure phrases).

イロト イヨト イヨト

LCS for simple motion: I

Path functions

TO, THROUGH, ALONG, ACROSS, FROM are path functions. UNDER, BEHIND, ON, etcetera, are location functions. The argument of a path function can be either an individual or a location.

- a. Lassie crawled through the minefield.
- a.' do(L, [GO-CRAWL(L, THROUGH(M))]) [M is path function arg]
- b. John ran to the bridge. [bridge is path goal]
- $\mathsf{b.'} \quad \mathrm{do}(J, \ [\mathrm{GO-RUN}(J, \ \mathrm{TO}(B))])$
- c. John ran (?to) under the bridge. [under(bridge) is path goal]
- c.' do(J, [GO-RUN(J, TO(UNDER(B)))])
- d. John ran under the bridge. [under(bridge) locates running event]
- $\mathsf{d}.' \quad \mathrm{do}(J, \, [\text{GO-RUN}(J)])$

	Agentivity	Change of state & Causation		Motion	
0000	000	000000	00000	0000000000	

LCS for simple motion: II

Path functions

- e. John ran from under the bridge. [under(bridge) is path source]
- $e.' \quad do(J, [GO-RUN(J, FROM(UNDER(B)))])$
- f. John ran from the bridge to the tower.
- $\mathsf{f.'} \quad \mathrm{do}(J, \, [\mathrm{GO-RUN}(J, \, [\mathrm{FROM}(B), \mathrm{TO}(T)])])$
- g. John ran across the bridge.
- $g.' \quad \mathrm{do}(J, \, [\mathrm{GO-RUN}(J, \, [\mathrm{ACROSS}(B)])])$

Agentivity 000	Change of state & Causation	Motion 00000●00000	

Caused motion [pattern]

kick, push, hit, teleport, bring, A full range of path phrases. Causer \neq theme. Manner of motion unspecified.

push type

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Caused motion [examples]

kick, push, hit, teleport, bring, A full range of path phrases. Manner of motion unspecified. x caused y to move along path z.

Examples

- a. John pushed the cart through the doorway.
- $\mathsf{a'}. \quad \mathrm{do}(J, \ [\text{Push}(j,c)]) \ \text{Cause} \ [\text{GO}(c, \ \text{through}(d))]$
- b. John threw the ball through the doorway.
- $\label{eq:bis} \textbf{b'}. \quad do(\textbf{j}, \, [\texttt{Throw}(j, b)]) \, \, \texttt{Cause} \, \, [\texttt{GO-Fly}(b, \, \texttt{Through}(d))]$
- c. John threw the ball under the bridge. [bridge is goal]
- $\label{eq:constraint} \textbf{c}'. \quad do(\textbf{j}, \, [\texttt{Throw}(\textbf{j}, b)]) \, \, \texttt{Cause} \, \, [\texttt{GO-Fly}(b, \, \texttt{to}(\texttt{under}(b)))]$
- d. John drove Mary home (vehicle reading).
- d'. do(j, [drive(j,x)]) cause [go-vehicle_x(m, to(home(m)))]
- d'. do(j, [drive(j,x)]) cause [go-vehicle_x(m, to(home(j)))]

Agentivity 000	Change of state & Causation	Motion 000000000000	

Caused locatedness (*put* type)

put, insert, place, stand, ... : source and goal not possible

* He put the box to the closet. (= CAUSE (${\rm BE-AT}\ (...))$)

put type

put on	x cause [become [be-at(y, on(z))]]
insert	x cause [become [be-at(y, in(z))]]
lay	x cause [become [be-at-lie(y, on(z))]]
	<i>lay</i> is the causative of <i>lie</i>

No patl	n ar	gument, so no distance phrase	S:
		(pushed the cart)	
push		He \langle drove the car \rangle 15	0 yards.
		(threw the ball)	
put	*	He put the cart 5 miles.	

Introduction Ager	ntivity Cha	nge of state & Causation I		Motion	References
0000 000	000	0000	00000	00000000000	i i i i i i i i i i i i i i i i i i i

Caused locatedness

put, insert, place, stand, ... : source and goal not possible

Examples

- a. John put the book on the table.
- a'. j cause [become [be-at(b, on(table))]]
- b. John put the book under the table.
- b'. j cause [become [be-at(b, under(table))]]
- c. John inserted the key in the lock.
- c'. j cause [become [be-at(k, in(l))]]
- d. John inserted the credit card under the carbon paper.
- d'. j CAUSE [BECOME [BE-AT(cc, IN(UNDER(cp)))]] lexical entry for *insert*
- e. x Cause [become [be-at(y, in(z))]]

< ロ > < 同 > < 回 > < 回 >

		Change of state & Causation		Motion	
0000	000	000000	00000	00000000000	

Summary

Know these distinctions

Motion preds	Location preds (<i>stand, lie</i>)	MPs take path phrases
(run, crawl)		
Motion preds	Become-located preds (land,	BLs are achievements
	arrive, hit)	BLs no paths
MPs	Caused MPs (push, throw)	MPs: 2 args (X,Y,Z)
		CMPs: 3 args (X,Y,Z)
CMPs	<i>put</i> -preds (<i>put, lay</i>)	3 args, no paths

・ロン ・四 と ・ ヨ と

	Agentivity	Change of state & Causation		Motion	
0000	000	000000	00000	0000000000	

LCS Summary

Motion

	Agentivity	Change of state & Causation			References
0000	000	000000	00000	00000000000	

van Valin, Robert D. 1990.

Semantic parameters of split intransitivity. Language 66:221–260.

Van Valin, Robert D., and Randy J. LaPolla. 1997. Syntax: Form, Meaning and Function. Cambridge University Press.

・ロト・日本・日本・日本・日本・日本