Lexical Semantics

Jean Mark Gawron
Linguistics
San Diego State University
gawron@mail.sdsu.edu
http://www.rohan.sdsu.edu/~gawron

San Diego State University, Department of Linguistics

January 9, 2014
Outline

1. Semantic features
2. Review Questions
3. Summary
4. Kinship Domain
5. Universal grammar
A lexical set

<table>
<thead>
<tr>
<th>?</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>man</td>
</tr>
<tr>
<td>?</td>
<td>boy</td>
</tr>
</tbody>
</table>
A lexical set

<table>
<thead>
<tr>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>man</td>
</tr>
<tr>
<td>Child</td>
<td>boy</td>
</tr>
</tbody>
</table>
Semantic dimensions/features

A lexical set

<table>
<thead>
<tr>
<th>Maturity/Gender</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td>man</td>
<td>woman</td>
</tr>
<tr>
<td>Child</td>
<td>boy</td>
<td>girl</td>
</tr>
</tbody>
</table>
Lexical entries

/man/
[Sex: MALE
Maturity: ADULT]

/woman/
[Sex: FEMALE
Maturity: ADULT]

/boy/
[Sex: MALE
Maturity: CHILD]

/girl/
[Sex: FEMALE
Maturity: CHILD]
[Man]: the extension of *man*

- **[Adult]** = the set of adults
- **[Male]** = the set of males
- **[Man]** = the set of men = **[Adult]** ∩ **[Male]** (blue area)
Like phonology?

There are many sounds in English. Can we decompose meanings into features in the same way we decompose sounds into features in phonology?

	i	u	e	a	ɪ	w	r	l	p	t	d	θ	ð	n	s	z	ʃ	k	h		
Syllabic	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Consonantal	-	-	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	-		
High	+	+	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	+	+
Back	-	+	-	+	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
Low	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
Anterior	-	-	-	-	-	-	-	-	-	+	+	+	+	+	+	+	+	+	-	-	-
Coronal	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Round	-	+	-	-	-	+	+	+	+	+	+	+	+	+	+	+	+	+	-	-	-
Tense	+	+	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Voice	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Continuant	+	+	-	-	-	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nasal	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Strident	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lateral	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
The building blocks of word meaning

The idea

Just as we have a set of phonological features that completely determine the possible sounds and possible contrasts of a language, so we have a set of semantic features that completely determine the possible word meanings of a language.

What features do

1. Account for the ways in which word meanings are similar (boy, man → [+ Male]).

2. Account for the ways in which word meanings are different (man [Maturity adult] ≠ boy [Maturity child]).

3. Account for truth conditions (this is actually the most important part).
A feature carves up some domain into **disjoint** sets

<table>
<thead>
<tr>
<th>Sex</th>
<th>[Male]</th>
<th>[Female]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maturity</td>
<td>[Adult]</td>
<td>[Child]</td>
</tr>
</tbody>
</table>
Man: What its features tell us

\[
\text{[Man]} = \text{[Adult]} \cap \text{[Male]} ; \text{ therefore }
\text{[Man]} \subset \text{[Adult]}
\text{[Man]} \subset \text{[Male]}
\]
Man vs. Boy

[SEX male]

[MATURE adult] v. [MATURE child]

[Male]
[man] [boy]

[adult] [man] [boy]

[child] [boy]
Horses: A second domain

/stallion/ = \[
\begin{bmatrix}
\text{Sex} & \text{male} \\
\text{Maturity} & \text{adult}
\end{bmatrix}
\]
/mare/ = \[
\begin{bmatrix}
\text{Sex} & \text{female} \\
\text{Maturity} & \text{adult}
\end{bmatrix}
\]
/colt/ = \[
\begin{bmatrix}
\text{Sex} & \text{male} \\
\text{Maturity} & \text{child}
\end{bmatrix}
\]
/filly/ = \[
\begin{bmatrix}
\text{Sex} & \text{female} \\
\text{Maturity} & \text{child}
\end{bmatrix}
\]
Truth-Conditions: Stallion
Questions

1. What is the difference between *stallion* and *man*?

 \[
 \begin{bmatrix}
 \text{SEX} & \text{male} \\
 \text{MATURITY} & \text{adult}
 \end{bmatrix}
 \]

2. What do we say about *horse* and *foal*? (a *foal* is less than 12 months old and either male or female); *colts* and *fillies* are up to 4 years old).

3. \[
 /\text{horse}/ = \begin{bmatrix} \text{TYPE} & \text{equine} \end{bmatrix} \\
 /\text{man}/ = \begin{bmatrix} \text{TYPE} & \text{human} \end{bmatrix}
 \]

 \[
 /\text{foal}/ = \begin{bmatrix} \text{TYPE} & \text{equine} \\
 \text{MATURITY} & \text{nb} \rightarrow \text{chd} \end{bmatrix}
 \]
Horses (Revised)

\[
/\text{horse}/ = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{female} \\
\text{Maturity} & \text{adult}
\end{bmatrix} \\
/\text{mare}/ = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{male} \\
\text{Maturity} & \text{adult}
\end{bmatrix} \\
/\text{colt}/ = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{female} \\
\text{Maturity} & \text{chd}\rightarrow\text{adlt}
\end{bmatrix} \\
/\text{stallion}/ = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{male} \\
\text{Maturity} & \text{adult}
\end{bmatrix} \\
/\text{foal}/ = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Maturity} & \text{nb}\rightarrow\text{chd}
\end{bmatrix} \\
/\text{filly}/ = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{male} \\
\text{Maturity} & \text{chd}\rightarrow\text{adlt}
\end{bmatrix}
\]
$[\text{stallion}] = [\text{Equine}] \cap [\text{Adult}] \cap [\text{Male}]$
Truth-conditions and features

\[\text{truth-conditions} = \text{intersection of feature extensions} \]

<table>
<thead>
<tr>
<th>Feature extension ([f])</th>
<th>A set of entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word extension ([w])</td>
<td>Intersection of its feature extensions</td>
</tr>
<tr>
<td>Truth conditions</td>
<td>Word is a true description of all entities in its extension, and not a true description of any entities not in its extension</td>
</tr>
</tbody>
</table>

\[[w] = A \cap B \cap C \]
Contrastiveness Principle

Corollary of truth conditions requirement

Two words with distinct extensions must have at least one distinct feature.
(stallion vs. man)
Another corollary

If a feature f is useful in describing the meaning of a word, w, then

$$[w] \subset [f]$$

Equivalently

If

$$[w] \not\subset [f]$$

then the feature f is not useful in describing the meaning of word w.
Sheep: A new domain

/sheep/ =
\[\begin{array}{c}
\text{TYPE} & \text{ovine} \\
\text{Sex} & \text{male} \\
\text{MATURITY} & \text{adult}
\end{array} \]

/ram/ =
\[\begin{array}{c}
\text{TYPE} & \text{ovine} \\
\text{Sex} & \text{male} \\
\text{MATURITY} & \text{adult}
\end{array} \]

/ewe/ =
\[\begin{array}{c}
\text{TYPE} & \text{ovine} \\
\text{Sex} & \text{male} \\
\text{MATURITY} & \text{adult}
\end{array} \]

/lamb/ =
\[\begin{array}{c}
\text{TYPE} & \text{ovine} \\
\text{MATURITY} & \text{chd} \rightarrow \text{adlt}
\end{array} \]
1 Semantic features

2 Review Questions

3 Summary

4 Kinship Domain

5 Universal grammar
A new semantic field

What are the features for *nerd*, *dweeb*, *dork* and *geek*?
Horse issues: Contrastiveness

\[
\text{/gelding/} = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{male} \\
\text{Maturity} & \text{adult}
\end{bmatrix}
\]

\[
\text{/stallion/} = \begin{bmatrix}
\text{TYPE} & \text{equine} \\
\text{Sex} & \text{male} \\
\text{Maturity} & \text{adult}
\end{bmatrix}
\]
Outline

1. Semantic features
2. Review Questions
3. Summary
4. Kinship Domain
5. Universal grammar
Summary: Truth conditions

<table>
<thead>
<tr>
<th>Feature extension</th>
<th>A set of entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word extension</td>
<td>Intersection of its feature extensions</td>
</tr>
<tr>
<td>Truth conditions</td>
<td>Word is a true description of all entities in its extension, and not a true description of any entities not in its extension</td>
</tr>
</tbody>
</table>
What features do

1. Account for the ways in which word extensions are similar. ([boy], [man] ⊂ [Male]).

2. Account for the ways in which word extensions are disjoint ([man] is disjoint from [boy] because [adult] is disjoint from [chd→adlt]).
Summary: contrastiveness and subset

1. **Two words with distinct extensions must have distinct features.**

2. **Contrastiveness principle:** When two words end up with the same features yet have different extensions, you need a new feature. (*stallion* vs. *man*)

3. **Subset principle:** When no word extensions in a given domain fall inside (⊂) a feature’s extension, the feature is useless in that domain (the feature SEX (Male, Female) is useless in the Nerd domain, because no word w in the Nerd domain is such that $w \subset \text{Female}$ or $w \subset \text{Male}$).
Outline

1. Semantic features
2. Review Questions
3. Summary
4. Kinship Domain
5. Universal grammar
Basic concepts

<table>
<thead>
<tr>
<th>Kinship terms</th>
<th>are words used to designate members of one’s close family.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ego</td>
<td>The person whose relatives are being identified, the referent of my in my father</td>
</tr>
<tr>
<td>Alter</td>
<td>The relative being identified, the referent of father in my father</td>
</tr>
<tr>
<td>Kinship type</td>
<td>The sequence of links between ego and alter. For example, we discover upon questioning our informant Joe that a relative referred to as Joe’s great uncle is actually Joe’s FFB (Joe’s Father’s Father’s Brother) while another referred to as Joe’s cousin once removed is Joe’s FFsds.</td>
</tr>
<tr>
<td>Consanguineal</td>
<td>relations share a common ancestor with ego.</td>
</tr>
<tr>
<td>Affine</td>
<td>relations are socially defined (wife, husband).</td>
</tr>
</tbody>
</table>
Descriptive tools for kinship terms

Kinship types: will be defined using . . .

Kinship links: mother (M), father (F), sister (S), brother (B), son (s), daughter (d), wife (w), husband (h). Kinship types designated by a sequence of links from the ”Ego” (self) on outwards.

<table>
<thead>
<tr>
<th>Kinship Type</th>
<th>Description</th>
<th>English Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSd</td>
<td>mother’s daughter’s daughter</td>
<td>Cousin</td>
</tr>
<tr>
<td>MBd</td>
<td>mother’s brother’s daughter</td>
<td>Cousin</td>
</tr>
<tr>
<td>MFSd</td>
<td>mother’s father’s sister’s daughter</td>
<td>Mother’s cousin, cousin once removed</td>
</tr>
<tr>
<td>B</td>
<td>brother</td>
<td>Brother</td>
</tr>
</tbody>
</table>

Other kinship types in the extension of **cousin:** MSs, MBs, FSD, ...
Basic English kinship

<table>
<thead>
<tr>
<th>Kin Terms</th>
<th>Kin Types (affine in red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>brother</td>
<td>B</td>
</tr>
<tr>
<td>sister</td>
<td>S</td>
</tr>
<tr>
<td>mother</td>
<td>M</td>
</tr>
<tr>
<td>father</td>
<td>F</td>
</tr>
<tr>
<td>uncle</td>
<td>FB, FSh, MB, MSh</td>
</tr>
<tr>
<td>aunt</td>
<td>FS, FBw, MS, MBw</td>
</tr>
<tr>
<td>grandfather</td>
<td>FF, MF</td>
</tr>
<tr>
<td>great-grandfather</td>
<td>FFF, FMF, MFF, MMF</td>
</tr>
<tr>
<td>(first) cousin</td>
<td>MSs, MSd, MBs, MBd, FSs, FSD, FBs, FBd</td>
</tr>
</tbody>
</table>

Basic Kinship Terms: one word for consanguineal relations, commonly used, not the hyponym of another kinship term. Excluded: second cousin, cousin once removed, relative, sybling, parent. What about *child*? What about *grandchild*?
Mother and father are both parents, female and male respectively.

Parents, grandparents, great grandparents, etc. are ancestors in various generations.

So we have three potential conceptual features:

\[\text{PARENT, SEX, ANCESTOR, GEN} \]

But the second observation suggests \text{PARENT} should be decomposed into

\[
\text{parent} = \begin{bmatrix}
\text{ANCESTOR} & \text{yes} \\
\text{GEN} & -1
\end{bmatrix}
\]

Now this means grandparent would be:

\[
\text{grandparent} = \begin{bmatrix}
\text{ANCESTOR} & \text{yes} \\
\text{GEN} & -2
\end{bmatrix}
\]
There's something a little funny about combining an ANCESTOR feature and a GENERATION feature, because after all, being an ancestor means being some member of a generation less than 0. This concept is REDUNDANT with GEN; they overlap in content; and the basic concepts of our analysis should NOT be redundant with each other.
An improvement

One feature LIN (for lineage) with two different values: DIRECT and COLLAT (Kroeber 1909)

DIRECT Those related to ego by DIRECT lineage either have ego as an ancestor (sons, daughters, grandchildren) or are ancestors of ego (parents, grandparents, greatgrandparents) or share ALL their ancestors with ego (syblings)

COLLAT Those related to ego by COLLAT lineage are not related by direct lineage and yet share some subset of their ancestors with ego (cousins, aunts, uncles, great aunts, great uncles, and so on).
Are these two features sufficient to complete the description of Basic English Kinship terms?
Direct LINEAGE kinship types

- Gen^2: FF, MF, FM, MM
 - Gen^1: F, M
 - Gen^0: B, S
 - Gen^1: s, d
 - Gen^2: ss, sd, ds, dd

Direct lineage relatives (red)
Choosing specific values for LIN and GEN

Gen-3: FF, MF, FM, MM
Gen-2: F, M
Gen-1: B, S
Gen-0: ego

Gen 2, LIN DIRECT kinship types
Applying the contrastiveness principle

GEN 2, LIN DIRECT English kinship terms

Gen-2, FF, MF, FM, MM

Gen-1, F, M

Gen0

Gen1

Gen2

ss grandson

sd granddaughter

ds grandson

dd granddaughter

ego

Gen1

Gen0

Gen0

Gen0
This gives us the following analysis of basic English kinship terms, based on only 3 features, LIN, GEN, and SEX.

- **mother**
 - LIN: DIRECT
 - SEX: FEMALE
 - GEN: -1

- **father**
 - LIN: DIRECT
 - SEX: MALE
 - GEN: -1

- **aunt**
 - LIN: COLLAT
 - SEX: FEMALE
 - GEN: -1

- **uncle**
 - LIN: COLLAT
 - SEX: MALE
 - GEN: -1
English kinship analysis, ctd.

\[
\begin{align*}
\text{sister} & \quad \begin{bmatrix}
\text{LIN} & \text{DIRECT} \\
\text{SEX} & \text{FEMALE} \\
\text{GEN} & 0
\end{bmatrix} \\
\text{cousin} & \quad \begin{bmatrix}
\text{LIN} & \text{COLLAT} \\
\text{SEX} & \text{FEMALE} \\
\text{GEN} & 0
\end{bmatrix} \\
\text{brother} & \quad \begin{bmatrix}
\text{LIN} & \text{DIRECT} \\
\text{SEX} & \text{MALE} \\
\text{GEN} & 0
\end{bmatrix}
\end{align*}
\]
English kinship analysis, ctd.

Granddaughter:
- Lin: Direct
- Sex: Female
- Gen: 2

Grandson:
- Lin: Direct
- Sex: Male
- Gen: 2

Grandmother:
- Lin: Direct
- Sex: Female
- Gen: -2

Grandfather:
- Lin: Direct
- Sex: Male
- Gen: -2
Observation: $[\text{GEN}^n]$ an infinite set

Horizontal links (B,S). Links up (F,M). Links down (s,d)

<table>
<thead>
<tr>
<th>Type</th>
<th>up</th>
<th>dn</th>
<th>Gen</th>
<th>DIR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>B,S</td>
<td>0</td>
<td>0</td>
<td>GEN^0</td>
<td>Yes</td>
</tr>
<tr>
<td>FBs,FSs</td>
<td>1</td>
<td>1</td>
<td>GEN^0</td>
<td>No</td>
</tr>
<tr>
<td>$FFBss$</td>
<td>2</td>
<td>2</td>
<td>GEN^0</td>
<td>No</td>
</tr>
<tr>
<td>$FFFFBsss$</td>
<td>3</td>
<td>3</td>
<td>GEN^0</td>
<td>No</td>
</tr>
<tr>
<td>F, M</td>
<td>1</td>
<td>0</td>
<td>GEN^{-1}</td>
<td>Yes</td>
</tr>
<tr>
<td>$FFBs,FSs$</td>
<td>2</td>
<td>1</td>
<td>GEN^{-1}</td>
<td>No</td>
</tr>
<tr>
<td>$MFFBss$</td>
<td>2</td>
<td>2</td>
<td>GEN^{-1}</td>
<td>No</td>
</tr>
<tr>
<td>$MFFFFBsss$</td>
<td>3</td>
<td>3</td>
<td>GEN^{-1}</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>up</th>
<th>dn</th>
<th>Gen</th>
<th>DIR?</th>
</tr>
</thead>
<tbody>
<tr>
<td>s, d</td>
<td>0</td>
<td>1</td>
<td>GEN^1</td>
<td>Yes</td>
</tr>
<tr>
<td>$FBsd,FSss$</td>
<td>1</td>
<td>2</td>
<td>GEN^1</td>
<td>No</td>
</tr>
<tr>
<td>$FFBssd$</td>
<td>2</td>
<td>3</td>
<td>GEN^1</td>
<td>No</td>
</tr>
<tr>
<td>$FFFFBssss$</td>
<td>3</td>
<td>4</td>
<td>GEN^1</td>
<td>No</td>
</tr>
</tbody>
</table>

\[\ldots\]
Outline

1. Semantic features
2. Review Questions
3. Summary
4. Kinship Domain
5. Universal grammar
Universal grammar

1. A set of principles, a universal template, that transcends the peculiarities of any individual language.

2. Chomsky's hypothesis.

3. A much older idea (as Chomsky himself has emphasize) going back at least to thinkers like Humboldt and perhaps Descartes.

4. Perhaps even older, extending back to a more Medieval concept of grammar which viewed logic as a kind of universal grammar.

Leibniz’s idea of a *characteristica universalis* or ideal language, which would make truth and inference crystal clear because of its formal properties.
Bierwisch’s hypothesis

Universality of semantic features

Semantic features do not differ from language to language, but are rather part of the general human capacity for language, forming a universal inventory *used in particular ways in individual languages.*

Bierwisch (1967) [in Bierwisch 1970]
Potential sources of universals

1. Logical concepts: and, or, not, if-then, all, some
2. Spatial relations: in, on, at, under/over, behind/in-front-of, go
3. Kinship terms: father, mother, sister, brother, husband, wife
4. Bodypart language: head, arm, leg, hand
5. BECOME, CAUSE
6. Complex concepts **decompose** into simpler ones:
 \[\text{kill} = \text{CAUSE} \left(\text{BECOME} \left(\text{NOT} \left(\text{ALIVE} \right) \right) \right) \]
Greenberg (1966), Murdock (1970)
Of 15 possible systems for referring to grandparents, only 4 are commonly found:

1. A single term for all grandparents, regardless of sex or lineage;
2. Two terms, one each for the maternal grandparents and paternal grandparents, regardless of sex;
3. Four terms, one for paternal male, paternal female, maternal male, and maternal female;
4. Two terms, one each for male grandparents and one for female grandparents (Murdock 1970); Greenberg’s original study turned up few of these, but in fact, they’re common.
There are 4 grandparents to cover:

\[FF, FM, MF, MM \]

A word might cover any nonempty subset of these, yielding 15 possibilities.

Thus it’s significant that only 4 systems are commonly found. For example, a two-term system with one word for FF, and another for FM, MF, and MM is rare or nonexistent (I don’t know which).
The subset principle makes it look as though the right universal features for accounting for grandparents are \textit{SEX} (rows) and \textit{SIDE} (columns):

<table>
<thead>
<tr>
<th></th>
<th>Paternal</th>
<th>Maternal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>FF</td>
<td>MF</td>
</tr>
<tr>
<td>Female</td>
<td>FM</td>
<td>MM</td>
</tr>
</tbody>
</table>

What would a 2-term system that didn’t use either of these features look like?
<table>
<thead>
<tr>
<th>Type</th>
<th>Term 1</th>
<th>Term 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paternal/maternal</td>
<td>LIN DIRECT GEN -2 SIDE PATERNAL FF, FM</td>
<td>LIN DIRECT GEN -2 SIDE MATERNAL MF, MM</td>
</tr>
<tr>
<td>Male/female</td>
<td>LIN DIRECT GEN -2 SEX MALE FF, MF</td>
<td>LIN DIRECT GEN -2 SEX FEMALE FM, MM</td>
</tr>
</tbody>
</table>
A language with different grandparent features

Consider the grandparent terms of the Australian language Mari’ngar (Scheffler 1978)

| tyan’angga | FF, MM
| tamie | MF, FM |

For example, [[tyan’angga]] (in red) isn’t a subset of any of the following: [[MALE]], [[FEMALE]], [[MATERNAL]], or [[PATERNAL]]:

<table>
<thead>
<tr>
<th></th>
<th>Paternal</th>
<th>Maternal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thus the features suggested by Greenberg’s study might be the common ones, or the unmarked ones, but they’re **not** universal.
Conclusion

We found little evidence for some kind of strong universality of semantic features in the grandparent example. There are three possible ways of dividing 4 grandparents into two sets which both contain 2 grandparents. All three are attested!

Seneca kinship terms homework

In our next homework assignment, we investigate the universality of kinship term features by looking at a kinship system quite different from that of English, Seneca.
Bierwisch, M. 1967.
Some semantic universals of german adjectivals.

Bierwisch, M. 1970.
Progress in linguistics: a collection of papers.
de Gruyter.

Universals of language.
MIT press.

Classificatory systems of relationship.

Kin term patterns and their distribution.
Australian kin classification.
Cambridge: Cambridge University Press.