Rules, Functions, and Recursive Definitions

1 Rules as functions

Consider the English past tense, phonetically. A citation form is the form we find in the dictionary. The citation form of walk is /wɔk/. The past tense form is /wɔkt/ (spelled walked). So you add /t/:

If \(\alpha \) is a verb citation form, then \(\alpha + /t/ \) is the past tense of the verb.

There are three problems with this. It doesn’t work for verbs that end with voiced sounds; the past tense of hug is not /hʌgt/; it’s /hʌgd/. It doesn’t work for verbs that end with /d/ or /t/. The past tense of raid is /redəd/ and the past tense of sight is /saɪtəd/. Finally, it doesn’t work for irregular verbs. The past tense of sing is not /sɪŋt/. It’s /sæŋ/ (spelled sang).

Let’s leave the irregulars out of it and fix the regulars:

1. If \(\alpha \) is a regular verb citation form, and \(\alpha \) ends in /t/ or /d/, then \(\alpha + /d/ \) is the past tense of the verb; otherwise,

2. if \(\alpha \) is a verb citation form, and \(\alpha \) ends in a voiceless sound, then \(\alpha + /t/ \) is the past tense of the verb;

3. otherwise, if \(\alpha \) is a verb citation form, then \(\alpha + /d/ \) is the past tense of the verb.

This defines a function. Let’s call the function \(\text{Past} \) and let’s call the set of regular verb citation forms \(\text{Verb}_{reg} \). Here’s how the function definition looks in our textbook’s notation:

\[
\text{Past} = \{ (\alpha, \alpha + \text{suf}) \mid \alpha \in \text{Verb}_{reg} \text{ and } \text{suf} = /d/ \text{ if END}(\alpha) \in \{/t/, /d/\}; \text{ and } \\
\text{suf} = /t/ \text{ if END}(\alpha) \in \text{Voiceless}; \text{ and } \\
\text{suf} = /d/ \text{ otherwise} \}
\]

I’m assuming that \(\text{END} \) is itself a function that for each verb stem, returns the last sound in it. So, for example:

\[
\text{END}(/wɔk/) = /k/
\]
Given this definition of \textbf{Past}, it’s now legitimate to write:

\begin{align*}
\text{Past}/\text{red}/ &= \text{red}d \\
\text{Past}/\text{wOk}/ &= \text{wOk}t \\
\text{Past}/\text{h2g}/ &= \text{h2g}d
\end{align*}

\section{Reviewing Recursive Definitions}

Defining the Natural numbers:

\begin{enumerate}
\item \(0 \in \mathbb{N}\)
\item \(\text{If } x \in \mathbb{N} \text{ then } \text{successor}(x) \in \mathbb{N}\)
\item \(\mathbb{N}\) is the smallest set that satisfies clause (i) and (ii)
\end{enumerate}

Is 3 a natural number....?

1. 0 is a natural number. (Axiom i).
2. \text{successor}(0)=1. (Def of successor function)
3. 1 is a natural number (Axiom ii on steps 1 and 2)
4. \text{successor}(1)=2. (Def of successor function)
5. 2 is a natural number (Axiom ii on steps 3 and 4)
6. \text{successor}(2)=3. (Def of successor function)
7. 3 is a natural number (Axiom ii on steps 5 and 6) Q. E. D.

This is called a recursive definition. In order to define what’s in the set \(\mathbb{N}\) I make reference to what’s in the set \(\mathbb{N}\) (clause ii).

The official Definition of \(\mathbb{N}\) (Peano’s definition):

\begin{enumerate}
\item \(0 \in \mathbb{N}\)
\item \(\text{If } x \in \mathbb{N} \text{ then } \text{successor}(x) \in \mathbb{N}\)
\item \(\mathbb{N}\) is the smallest set that satisfies clause (i) and (ii)
\end{enumerate}

Sufficient and necessary conditions required. Clause (i) and (ii) alone aren’t enough to keep Bill Clinton out of the set of natural numbers.
Recursive definitions of grammars

Definition of a small language recursively by defining the set of sentences of the language, which we call \(S \).

I’ll use ‘\(xy \)’ to mean ‘\(x \)’ followed by (or concatenated with) ‘\(y \)’:

1. First we define a set \(N \) as follows:

2. Let \(N = \{ \text{book, magazine, boy, girl} \} \)
3. Let \(\text{Adj} = \{ \text{big, fat} \} \)
4. Let \(V = \{ \text{liked, loved} \} \)
5. Let \(\text{Art} = \{ \text{the} \} \).
6. Next we define a set \(\text{Nom} \):

 (a) If \(x \in N \) then \(x \in \text{Nom} \).

 (b) If \(x \in \text{Adj} \) and \(y \in \text{Nom} \) then \(xy \in \text{Nom} \).

 (c) Nothing else is in \(\text{Nom} \).
7. Next we define a set \(\text{NP} \), using \(\text{Nom} \):

 (a) If \(x \in \text{Art} \) and \(y \in \text{Nom} \) then \(xy \in \text{NP} \).

 (b) Nothing else is in \(\text{NP} \).
8. Next we define a set \(\text{VP} \):

 (a) If \(x \in V \) and \(y \in \text{NP} \) then \(xy \in \text{VP} \).

 (b) Nothing else is in \(\text{VP} \).
9. Finally we define the set \(S \), the set of sentences of the language.

 (a) If \(x \in \text{NP} \) and \(y \in \text{VP} \) then \(xy \in S \).

 (b) If \(x \in \text{NP} \) and \(y \in S \) then ‘\(x \) believed \(y \)’ \(\in S \).

 (c) Nothing else is in \(S \).

Questions

1. How would a linguist define this language using phrase structure rules?
2. Is S infinite?

3. Which of the following are in Nom?

 - boy
 - big boy
 - big fat boy
 - fat big boy
 - the big fat boy

4. Is the following in S?

 The big boy believed the girl believed the boy liked the big fat book.