Equivalence and Classification

Jean Mark Gawron

Linguistics
San Diego State University
gawron@mail.sdsu.edu
http://www.rohan.sdsu.edu/~gawron
Equivalence Relations
Definition 1. A relation R in the set A is an equivalence relation in A if and only if

1. R is reflexive on A; and
2. R is symmetric; and
3. R is transitive.
Example 1: identity

The identity relation I_A is an equivalence relation on A:

- Reflexivity: Everything is equal to itself. For every $x \in A$, $\langle x, x \rangle \in I_A$.
The identity relation \(I_A \) is an equivalence relation on \(A \):

- **Reflexivity**: Everything is equal to itself. For every \(x \in A \), \(\langle x, x \rangle \in I_A \).

- **Symmetry**: Equality is symmetric. If \(x = y \), then \(y = x \).
Example I: identity

The identity relation I_A is an equivalence relation on A:

- **Reflexivity:** Everything is equal to itself. For every $x \in A$, $\langle x, x \rangle \in I_A$.

- **Symmetry:** Equality is symmetric. If $x = y$, then $y = x$.

- **Transitivity:** If $x = y$ and $y = z$, then $x = z$.
Example II: $A \times A$

The Cartesian product of A with itself is an equivalence relation on A:

- Reflexivity: For every $x \in A$, $\langle x, x \rangle \in A \times A$.
Example II: $A \times A$

The Cartesian product of A with itself is an equivalence relation on A:

- **Reflexivity**: For every $x \in A$, $\langle x, x \rangle \in A \times A$.

- **Symmetry**: If $\langle x, y \rangle \in A \times A$, this shows $x, y \in A$. So $\langle y, x \rangle \in A \times A$.
Example II: $A \times A$

The Cartesian produce of A with itself is an equivalence relation on A:

- **Reflexivity:** For every $x \in A$, $\langle x, x \rangle \in A \times A$.
- **Symmetry:** If $\langle x, y \rangle \in A \times A$, this shows $x, y \in A$. So $\langle y, x \rangle \in A \times A$.
- **Transitivity:** If $\langle x, y \rangle \in A \times A$, and $\langle y, z \rangle \in A \times A$, this shows $x, z \in A$. So $\langle x, z \rangle \in A \times A$.

Example III: Same Voicing, Same Location

• Reflexivity: Every sound has the same voicing as itself.
Example III: Same Voicing, Same Location

- Reflexivity: Every sound has the same voicing as itself.
- Symmetry: If a sound x has the same voicing as a sound y, then y has the same voicing as x.
Example III: Same Voicing, Same Location

- Reflexivity: Every sound has the same voicing as itself.
- Symmetry: If a sound x has the same voicing as a sound y, then y has the same voicing as x.
- Transitivity: Suppose x has the same voicing as y and y has the same voicing as z, then x has the same voicing as z.

Proof: Suppose x is voiced. Then if x stands in the same voicing relation to y, then y is voiced. And if y stands in the same voicing relation to z, then z is voiced. So x and z have the same voicing. The case of x being voiceless is completely parallel.
Consider this relation \(R \) defined by:

\[
R = \{ (a, b) \mid a - b \text{ is evenly divisible by } 3 \}
\]

A list of numbers \(a \) that stand in the relation \(R \) when \(b = 7 \):

<table>
<thead>
<tr>
<th>(a)</th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>10</th>
<th>13</th>
<th>16</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a - 7)</td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>

Notice all the numbers in the top row stand in the relation \(R \) to each other, because they are all separated by multiples of 3.

Claim: For any integer \(a \), \(a + m \) stands in the relation \(R \) to \(a \), where \(m \) is a multiple of 3, and all the integers that stand in \(R \) to \(a \) stand in \(R \) to each other.

- Reflexivity: \(x - x = 0 \) and 0 is divisible by 3.
- Symmetry: If \(x - y \) is divisible by 3, then \(y - x \) is divisible by 3.
- Transitivity: Proof left to you.
Non-examples

- Sybling relation
- $\{\langle x, y \rangle \mid \text{height difference of } x \text{ and } y \text{ is less than 5 inches}\}$
- $\{\langle x, y \rangle \mid x \leq y\}$
- $\{\langle x, y \rangle \mid x \text{ and } y \text{ are people who eat at the same restaurant}\}$
If R is an equivalence relation, then when the solid links exist, the links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
Equivalence relations: The intuition

If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$
Then $B \times B \subseteq R$
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let \(B = \{ a, b, c, d, e, f \} \)

Then \(B \times B \subseteq R \)
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let \(B = \{a, b, c, d, e, f\} \)

Then \(B \times B \subseteq R \)
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
Equivalence relations: The intuition

If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{a, b, c, d, e, f\}$

Then $B \times B \subseteq R$
Equivalence relations: The intuition

If R is an equivalence relation, then when the solid links exist, the dashed links must all exist.

Let $B = \{ a, b, c, d, e, f \}$

Then $B \times B \subseteq R$
Definition 2. A partitioning of a set A is a set of disjoint sets $p_1, p_2, \ldots p_n$ such that

$$A = p_1 \cup p_2 \cup p_3 \cup \ldots p_n$$

Definition 3. An equivalence relation R on A defines a partitioning of R. Each of the sets in the partition is called an equivalence class.

We define π_R, the partition induced by equivalence relation R, as follows.

$$\pi_R = \{ S \mid \exists x \in A[S = \{ y \mid \langle x, y \rangle \in R \}] \}$$
Partitions: The two extreme cases

• $|\pi| = |A|$. The identity relation on a set $A = \{a, b, c\}$ induces the partition:

$$\pi_I = \{ \{a\}, \{b\}, \{c\} \}$$

• $|\pi| = 1$. If $A = \{a, b, c\}$, then $A \times A$ induces the partition:

$$\pi_{A\times A} = \{ \{a, b, c\} \}$$

• Exercise: List the other possible partitions of A. Give the relations that induce them.
The difference is divisible by 3 relation partitions the set of integers into three sets we’ll call S_0, S_1, and S_2:

\[
S_0 = \{0, 3, 6, 9, \ldots \} \\
S_1 = \{1, 4, 7, 10, \ldots \} \\
S_2 = \{2, 5, 8, 11, \ldots \}
\]

Note we have 3 disjoint infinite sets which unioned together give us the entire set of integers.
We call the partition induced by the SameVoicing relation **Voice**.
We will call the partition induced by the SamePlace relation **Place**:

\[
\begin{array}{cccc}
p & b & m & f \\
\theta & s & j & k \\
\delta & z & 3 & g \\
\end{array}
\]
Definition 4. A **feature space** is a pair of a set A together with a set Π of partitions of A. A is called the domain of the feature space. Each member of Π is called a **feature**.

Example 1. Let us choose the set of obstruents as our domain, and the partitions induced by the SameVoice relation and the SamePlace relation as our features. Then

$$\text{PhonFeatures} = \langle \text{Obstruents}, \{\text{Place, SameVoice}\} \rangle$$

is a feature space with Obstruents as its domain and

$$\{\text{Place, Voice}\}$$

as its features.
Definition 5. A feature specification ξ chosen from a feature space F is a set S such that each member of ξ is a member of one of the features of F.

If

$$\xi = \{ Val1, Val2 \} \quad \text{where} \quad Val1 \in \text{Feat1}, \ Val2 \in \text{Feat2}$$

in feature space

$$F = \langle A, \{ \text{Feat1}, \text{Feat2} \} \rangle,$$

then feature specification ξ can be written

$$\xi = \begin{bmatrix} \text{Feat1} & Val1 \\ \text{Feat2} & Val2 \end{bmatrix}$$

We call $[\xi]$ the denotation of a feature specification, defined as the intersection of its partitions:

$$[\xi] = Val1 \cap Val2$$
Example 2. Let:

\[
\begin{align*}
\text{PhonFeatures} &= \langle \text{Obstruents}, \{\text{Place, Voice}\} \rangle \\
\text{Voice} &= \{ \text{Plus, Minus} \} \\
\text{Place} &= \{ \text{Labial, Labiovelar, Interdental, Alveolar, Alveopalatal, Velar, Glottal} \}
\end{align*}
\]

For example, if:

\[
\begin{align*}
\text{Minus} &= \{ p, f, ð, s, t, k, h \} \\
\text{Alveolar} &= \{ t, d, n, s, z \}
\end{align*}
\]

then

\[
\begin{bmatrix}
\text{Voice} & \text{Minus} \\
\text{Place} & \text{Alveolar}
\end{bmatrix}
\]

is a feature specification denoting \{t, s\}.