
Probabilistic Context Free Grammars

1 Defining PCFGs

A PCFG G consists of

1. A set of terminals:{wk}, k = 1 . . . , V

2. A set of non terminals:{Ni}, i = 1 . . . , n

3. A designated Start symbol: N1

4. A set of rules:{Ni → ξj}, i = 1 . . . , n

5. A probability function P which assigns probabilities to rules so that, for all nonterminals
Ni ∑

j

P(Ni → ξj) = 1

Conventions:

Notation Meaning
G Grammar (PCFG)
L Language (generated or accepted by a grammar)
t parse tree
{N1, . . . , Nn} Nonterminal vocabulary (N1 start symbol)
{w1, . . . , wV } Terminal vocabulary
w1 . . . wm Sentence to be parsed
Nj

pq Nonterminalj spans positionsp throughq in sentence
αj(p, q) Outside probabilities
βj(p, q) Inside probabilities
Nj ∗⇒ wp . . . wq Nonterminalj dominates wordswp throughwq in sentence (not necessarily directly)

A key property of PCFGs is what we will call theindependence assumption:

Independence Assumption
The probability of a node sequence Ns Nr depends only on the immediate mother
node, not any node above that or outside the current constituent.

We first address the problem of finding the probability of a string given a PCFG grammar.
This is directly useful for some applications, such as filtering the hypoethses of a speech recog-
nizer.

But considering some efficient algorithms for calculating string probabilities will have a side-
effect. It will provide a line of attack on a somewhat more central problem for this course: finding
the most probable parse of a string.
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2 Example

Thus the only parameters of a PCFG grammar are the rule probabilities, as in the following
simple PCFG:

(1) S→ NP VP 1.0 NP→ NP PP 0.4
PP→ P NP 1.0 NP→ astronomers 0.1
VP→ V NP 0.7 NP→ ears 0.18
VP→ VP PP 0.3 NP→ saw 0.04
P→ with 1.0 NP→ stars 0.18
V → saw 1.0 NP→ telescopes 0.1

Notice the constraint ∑
j

P(NP→ ξj) = 1

is met. The sum of the rule probabilities for all the NP rules is 1.
We consider the probability of the sentence

(2) Astronomers saw stars with ears.

with respect to this grammar, which admits the two analyses shown in Figures 1 and 2. The
probability of each anaylsis is computed simply by multiplying the probabilities of the rules.

We compute the probability of the string by summing the probabilities of its two analyses:

P(w15) = P(t1) + P(t2)
= 0.0009072 + 0.0006804
= 0.0015876

3 Two algorithms for efficiently computing string probabili-
ties

The naive approach to computing string probabilities: Compute the probability of each parse and
add.

But: The number of parses of a string with a CFG grammar in general grows exponentially
with the length of the string. Therefore this is inefficient.

3.1 Inside Probabilities

P(w1,m | G) = P(N1 ∗⇒ w1,m | G)
= P(w1,m | N1

1,m, G) = β1(1, m)

The probability of a wordstring given the grammar equals the probability that the start symbol
exhaustively dominates the string, which is the probability of the stringw1,m given that the start
symbol dominates words 1 through m, which we call theinside probability of the string for the
span1m and the category N1. The general definition of an inside probability:

βj(p, q) = P(wp,q | Nj
p,q, G)
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There is an an algotrithm for computing the inside probability of a strinng known as the
inside algorithm. It breaks down to a base case and an induction:

1. Base case: The event that a nonterminal Nj exhaustively dominates the word at positionk
is Nj

kk and the probability that that happens given the grammar is:

P(Nj
kk) = βj(k, k)

= P(Nj → wk | G)

The point of theβ notation is that it uses only indices, indices of word positions (subscripts)
and grammar elements (superscripts). The point of the 2nd line is that this reduces to a fact
about the grammar, irrespective of word positions.

2. Induction We assume a Chomsky normal grammar, so the situation is as pictured in Fig-
ure 3.

Then

βj(p, q) = P(wpq | Nj
pq, G) (1)

=
∑
r,s

q−1∑
d=p

P(wpd, Nr
pd, w(d + 1)q, Ns

(d+1)q | Nj
pq, G) (2)

We regard the probability of an analysis ofwpq as an instance of category Nj as the sum of
the probabilities of an analysis using some way of expanding Nj; each such analysis uses
some production:

Nj → Nr Ns

Following the picture in Figure 3, we split the word string into two halves at wordd,
p ≤ d < q, wpd andw(d+1)q, one corresponding to Nr and one to Ns. Thus the jointly
occurring events in (2) are wordstringwpd being analyzed as Nr and word stringw(d+1)q

being analyzed as Ns.

βj(p, q) =
∑
r,s

q−1∑
d=p

P( Nr
pd, Ns

(d+1)q | Nj
pq, G)× P(wpd | Nj

pq, Nr
pd, Ns

(d+1)q, G)

×P(w(d+1)q | Nj
pq, Nr

pd, Ns
(d+1)q, wpd, G)

(3)

Equation (3) uses the chain rule on the joint events of (2). Now we use the independence
assumptions of CFGs to conclude:

βj(p, q) =
∑
r,s

q−1∑
d=p

P( Nr
pd, Ns

(d+1)q | Nj
pq, G)× P(wpd | Nr

pd, G)

×P(w(d+1)q | Ns
(d+1)q, G)

(4)

And substituting in the definitions of an inside probability and a rule probability, we have
the basic equation we can compute with:

βj(p, q) =
∑
r,s

q−1∑
d=p

P( Nj → Nr Ns | Nj
pq, G)× βr(p, d)× βs(d + 1, q) (5)
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This means we can compute inside probabilities bottum up.

We use a dynamic programming algorithm, and as is customary represent the computations
in a table. Cell(i, j) for row i and columnj contains the result of theβ computations for
the string beginning with wordi and ending with wordj. First we do all the wordβs:

1 2 3 4 5
1 βNP = 0.1
2 βNP = 0.04

βV = 1.0
3 βNP = 0.18
4 βP = 0.1
5 βNP = 0.18

astronomers saw stars with ears

We now proceed as with CYK, trying to build constituents of length 2 next:

1 2 3 4 5
1 βNP = 0.1
2 βNP = 0.04

βV = 1.0
βVP = 0.126

3 βNP = 0.18
4 βP = 0.1 βPP = 0.18
5 βNP = 0.18

astronomers saw stars with ears

The computation ofβVP(2, 3) andβPP(4, 5)

βVP(2, 3) = P(VP→ V NP)× βV(2, 2)× βNP(3, 3) (6)

= 0.7× 1.0× 0.18 (7)

= 0.126 (8)

βPP(4, 5) = P(PP→ P NP)× βP(4, 4)× βNP(5, 5) (9)

= 1.0× 1.0× 0.18 (10)

= 0.18 (11)

And in the next round:

1 2 3 4 5
1 βNP = 0.1 βS = 0.0126
2 βNP = 0.04

βV = 1.0
βVP = 0.126

3 βNP = 0.18 βNP = 0.01296
4 βP = 0.1 βPP = 0.18
5 βNP = 0.18

astronomers saw stars with ears
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The computation ofβS(1, 3) andβNP(3, 5)

βS(1, 3) = P(S→ NP VP)× βNP(1, 1)× βVP(2, 3) (12)

= 1.0× 0.1× 0.126 (13)

= 0.0126 (14)

βNP(3, 5) = P(NP→ NP PP)× βNP(3, 3)× βPP(4, 5) (15)

= 0.4× 0.18× 0.18 (16)

= 0.1296 (17)

And in the only round with an ambiguous constituent:

1 2 3 4 5
1 βNP = 0.1 βS = 0.0126
2 βNP = 0.04

βV = 1.0
βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296
4 βP = 0.1 βPP = 0.18
5 βNP = 0.18

astronomers saw stars with ears

The computation ofβVP(2, 5) :

βVP(2, 5) = (P(VP→ V NP)× βV(2, 2)× βNP(3, 5)) +
(P(VP→ VP PP)× βVP(2, 3)× βPP(4, 5))

(18)

= (0.7× 1.0× 0.01296) + (0.3 ∗ 0.126 ∗ 0.18) (19)

= 0.009072 + 0.006804 (20)

= 015876 (21)

(22)

Theprobability table (or chart) may be completed in the next step:

1 2 3 4 5
1 βNP = 0.1 βS = 0.0126 βS = 0.0015876
2 βNP = 0.04

βV = 1.0
βVP = 0.126 βVP = 0.015876

3 βNP = 0.18 βNP = 0.01296
4 βP = 0.1 βPP = 0.18
5 βNP = 0.18

astronomers saw stars with ears

The computation ofβS(1, 5) is left as an exercise.
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3.2 Outside Probabilities

We defineαj(p, q), the outside probability for a category Nj and a spanwpq as

αj(p, q) = P(w1(p−1), Nj
pq, w(q+1)m | G)

This is the probability of generating Nj covering the span(p, q) (whatever the words in it) along
with the all the words outside it.

Using the notion outside probability, we can view the problem of computing the probability
of a string from the point of view of any word in it. Pick a wordwk. The following is true:

P(w1,m | G) =
∑

j P(w1,(k−1), wk, w(k+1)m, Nj
kk | G)

=
∑

j P(w1,(k−1), w(k+1)m, Nj
kk | G)

×P(wk | w1,(k−1), Nj
kk, w(k+1)m, G)

= αj(k, k)× P(Nj → wk)

We start with the observation that any assignment of a category towk fixes a probability for
analyses of the entire string compatible with that assignment. So we sum up such analysis proba-
bilities for each category Nj in the grammar. We then apply the chain rule, and the independence
assumptions of PCFGs, and the definition ofαj(p, q) to derive an expression for the probability
of the entire string.

So if we knew theαj(k, k) values, computing the string probability would be easy.
We now show theoutside algorithm, a method for solving the more general problem of

computingαj(p, q). This is done topdown. We break it down as before into a base case and an
induction:

1. Base case:
α1(1, m) = 1

= 0 for j 6= 1

2. Induction The situation is as pictured in Figure 4 or Figure 5

Then

αj(p, q) = [
∑

f,g 6=j

∑m
e=q+1 P(w1(p−1), w(q + 1)m, Nf

pe, Nj
pq, Ng

(q+1)e)]

+[
∑

f,g

∑p−1
e=1 P(w1(p−1), w(q + 1)m, Nf

eq, Ng
e(p−1), Nj

pq)]

(23)

The first double sum is the case of Figure 4. The second is the case of Figure 5. In the first
case, we restrict the two categories not to be equal, so as not to count rules of the form:

X → Y Y

twice.

αj(p, q) = [
∑

f,g 6=j

∑m
e=q+1 P(w1(p−1), w(q + 1)m, Nf

pe)× P(Nj
pq, Ng

(q+1)e | Nf
pe)

×P(w(q + 1)m | Ng
(q+1)e)] + [

∑
f,g

∑p−1
e=1 P(w1(e−1), w(q + 1)m, Nf

eq)

×P(Ng
e(p−1), Nj

pq | Nf
eq)× P(we(p−1) | Ng

e(p−1))]

= [
∑

f,g 6=j

∑m
e=q+1 αf (p, e)P(Nf → Nj Ng)βg(q + 1, e)]

+[
∑

f,g

∑p−1
e=1 αf (e, q)P(Nj → Ng Nj)βg(e, p− 1)]
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4 Finding the most probable parse

We defineδj(p, q) as the highest probability parse ofwpq as Nj

What follows is a Viterbi like algorithm for finding the best parse. Corresponding to Viterbi
valkues we will haveδ values. Corresponding to a Viterbi bnacktrace we will have poointers
to the subtrees that help us produce our highest probvability parse for each (category,start, end)
triple.

1. Initialization :
δi(p, p) = P(Ni → wp)

2. Induction :
δi(p, q) = max

1≤j,k≤n

p≤r<q

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

Store backtrace:

Ψi(p, q) = argmax
j,k,r

P(Ni → Nj Nk)δj(p, r)δk(r + 1, q)

3. Termination : The probability of the max probability treêt is:

P(t̂) = δ1(1, m)

In addition we know the mother node and span of the highest probability parse: N1 and
(p, q).

In general given a mother node and a span(i, p, q), we can construct a highest probability
parse tree below it by following theΨ pointers:

Let Ψi(p, q) = (j, k, r)
Then left daughter= Nj

pr

right daughter= Nk
(r+1)q
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S1.0

NP0.1

Astronomers

VP0.7

V1.0

saw

NP0.4

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t1) = 1.0× 0.1××0.7× 1.0× 0.4× 0.18× 1.0× 1.0× 0.18
= 0.0009072

Figure 1:t1

S1.0

NP0.1

Astronomers

VP0.3

VP0.7

V1.0

saw

NP0.18

stars

PP1.0

P1.0

with

NP0.18

ears

P(t2) = 1.0× 0.1××0.3× 0.7× 1.0× 0.18× 1.0× 1.0× 0.18
= 0.0006804

Figure 2:t2

Nj

Nr

Ë
wp . . . wd

Ns

Ë
wd+1 . . . wq

Figure 3: Computation of inside probability:βj(p, q)
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N1

w1 . . . wp−1 ...
we+1 . . . wm

Nf

Nj

Ë
wp . . . wq

Ng

Ë
wq+1 . . . we

Figure 4: Computation of outside probability (left category):αj(p, q)
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N1

w1 . . . we−1 ...
wq+1 . . . wm

Nf

Ng

Ë
we . . . wp−1

Nj

Ë
wp . . . wq

Figure 5: Computation of outside probability (right category):αj(p, q)
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