Probabilistic Context Free Grammars

1 Defining PCFGs

A PCFG G consists of

1.

2
3
4.
5

A set of terminals{w*}, k=1...,V

. Asetof nonterminalsfN‘}, i =1...,n

. A designated Start symbol:'N

Asetofrules{N’ — &}, i=1...,n

. A probability function P which assigns probabilities to rules so that, for all nonterminals

Ni

AN =€) -

Conventions:

Notation Meaning

G Grammar (PCFG)

L Language (generated or accepted by a grammar)
t parse tree

{N',...,N"}  Nonterminal vocabulary (Nstart symbol)

{w! ..., w¥}  Terminal vocabulary

Wy ... Wy Sentence to be parsed

N{,q Nonterminal;j spans positiong throughg in sentence
a;(p, q) Outside probabilities

Bi(p,q) Inside probabilities

N/ = w,...w, Nonterminalj dominates wordss, throughw, in sentence (not necessarily directly)

A key property of PCFGs is what we will call thedependence assumption

Independence Assumption

The probability of a node sequencé N” depends only on the immediate mother

node, not any node above that or outside the current constituent.

We first address the problem of finding the probability of a string given a PCFG grammar.
This is directly useful for some applications, such as filtering the hypoethses of a speech recog-

nizer.

But considering some efficient algorithms for calculating string probabilities will have a side-
effect. It will provide a line of attack on a somewhat more central problem for this course: finding
the most probable parse of a string.



2 Example

Thus the only parameters of a PCFG grammar are the rule probabilities, as in the following
simple PCFG:

(1) S—NPVP 1.0 NP— NP PP 0.4
PP— P NP 1.0 NP— astronomers 0.1
VP —-VNP 0.7 NP— ears 0.18
VP —-VPPP 0.3 NP— saw 0.04
P — with 1.0 NP— stars 0.18
V — saw 1.0 NP— telescopes 0.1

Notice the constraint

ZP(NP—> gy=1

is met. The sum of the rule probabilities for all the NP rules is 1.
We consider the probability of the sentence

(2)  Astronomers saw stars with ears.

with respect to this grammar, which admits the two analyses shown in Figures f[Jand 2. The
probability of each anaylsis is computed simply by multiplying the probabilities of the rules.
We compute the probability of the string by summing the probabilities of its two analyses:

P(U}l5) = P(tl) + P(tz)
= 0.0009072 + 0.0006804
= 0.0015876

3 Two algorithms for efficiently computing string probabili-
ties

The naive approach to computing string probabilities: Compute the probability of each parse and
add.

But: The number of parses of a string with a CFG grammar in general grows exponentially
with the length of the string. Therefore this is inefficient.

3.1 Inside Probabilities

P(wi,, | G) = P(N'= wy,, | G)
= P(wim [ Nj,,,G) = Ai(1,m)
The probability of a wordstring given the grammar equals the probability that the start symbol
exhaustively dominates the string, which is the probability of the string given that the start
symbol dominates words 1 through m, which we callithede probability of the string for the

spanlm and the category N The general definition of an inside probability:
Bi(p,q) = P(wy,q | N;aqv G)
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There is an an algotrithm for computing the inside probability of a strinng known as the
inside algorithm. It breaks down to a base case and an induction:

1. Base caseThe event that a nonterminal Mxhaustively dominates the word at position
is N7, and the probability that that happens given the grammar is:

PINL,) = (k. k)

The point of the3 notation is that it uses only indices, indices of word positions (subscripts)
and grammar elements (superscripts). The point of the 2nd line is that this reduces to a fact
about the grammar, irrespective of word positions.

2. Induction We assume a Chomsky normal grammar, so the situation is as pictured in Fig-
ure[3.

Then
5] (pa Q) = P(’lqu ’ Npq7 G) (l)
q—1
= > > Plwpg, Npg, w(d +1)g, Ny, | N2, G) 2)
7,8 d=p

We regard the probability of an analysis:of, as an instance of category s the sum of
the probabilities of an analysis using some way of expandifjgeBich such analysis uses
some production:

N/ — N" N*
Following the picture in Figurg]3, we split the word string into two halves at wbrd
p < d < q, wyy andw41)4, ONE corresponding to'Nand one to N. Thus the jointly
occurring events irBZ) are wordstring,; being analyzed as'Nand word stringu 1),
being analyzed asN

ZZ P pd? ?d—l—l)q | Npq? G) X P(’U)pd | Npq7 pd> ?d-l—l)q? G) (3)
s d=p XP(UJ(d+1 | Npq, pd> N(d+1)q7 wpd, G)

Equation [(B) uses the chain rule on the joint event$ jof (2). Now we use the independence
assumptions of CFGs to conclude:

q—1
> D PON7, Nigyyy, | N3, G) x P(wyq | N7y, G) (4)

rs d=p xP(w(d+1) ’N(d+1)q7G)

And substituting in the definitions of an inside probability and a rule probability, we have
the basic equation we can compute with:

q—1
D Y PN N'N* [NJ G) x B(p,d) x B(d +1,q) (5)

7,8 d=p



This means we can compute inside probabilities bottum up.

We use a dynamic programming algorithm, and as is customary represent the computations
in a table. Cellz, j) for row ¢ and columny contains the result of thé computations for
the string beginning with wordand ending with word. First we do all the words:

1 2 3 4 5
1| Bnwp=0.1
2 Bne = 0.04
By = 1.0
3 Bne = 0.18
4 Bp=0.1
5 Bne = 0.18
astronomers saw stars with ears

We now proceed as with CYK, trying to build constituents of length 2 next:

1 2 3 4 5
1| Bw=0.1
2 Bne = 0.04 | Byp = 0.126
By = 1.0
3 Bnp = 0.18
4 Bp=0.1] Bpp=0.18
5 Onp = 0.18
astronomers saw stars with ears
The computation ofiyp(2, 3) andFpp(4, 5)
Bvp(2,3) = P(VP — V NP) x Gy(2,2) x Onp(3,3) (6)
= 0.7x1.0x0.18 (7
= 0.126 (8)
ﬁpp(4, 5) = P(PP—> P Np) X ﬁp(4,4) X BNF’(57 5) (9)
= 1.0x1.0x0.18 (10)
0.18 (11)
And in the next round:
1 2 3 4 5
1] By =0.1 Bs = 0.0126
2 Bnp = 0.04 | Byp = 0.126
By = 1.0
3 Onp = 0.18 Bnp = 0.01296
4 ﬁp201 ﬁPP: 0.18
5 Bnp = 0.18
astronomers saw stars with ears




The computation ofis(1, 3) andSye(3, 5)

Os(1,3) = P(S— NP VP) x fyp(1,1) x fByp(2,3) (12)
= 1.0 x 0.1 x0.126 (13)
= 0.0126 (14)
Onp(3,5) = P(NP — NP PB X np(3,3) X Bpp(4, 5) (15)
= 0.4 x0.18x0.18 (16)
= 0.1296 (17)
And in the only round with an ambiguous constituent:
1 2 3 4 5
1| 6w =0.1 Bs = 0.0126
2 Bne = 0.04 | Byp = 0.126 Byp = 0.015876
By = 1.0
3 Onp = 0.18 One = 0.01296
4 Bp=0.1| fBpp=0.18
5 Onp = 0.18
astronomers saw stars with ears
The computation ofip(2,5) :
Bve(2,5) = (P(VP — VNP) x (5y(2,2) x Onp(3,5)) + (18)
(P(VP — VP PB x (yp(2,3) X Opp(4,5))
= (0.7 x 1.0 x 0.01296) + (0.3 % 0.126 * 0.18) (19)
= 0.009072 + 0.006804 (20)
= 015876 (21)
(22)

Theprobability table (or chart) may be completed in the next step:

1 2 3 4 5
1| G =0.1 fs = 0.0126 Bs = 0.0015876
2 Bne = 0.04 | Byp = 0.126 Byp = 0.015876
By = 1.0
3 Onp = 0.18 One = 0.01296
4 Bp=0.1| fBpp=0.18
5 Onp = 0.18
astronomers saw stars with ears

The computation ofis(1, 5) is left as an exercise.




3.2 Outside Probabilities

We definen;(p, ), the outside probability for a category Mnd a spam,, as
a;(p, @) = Pwigp-1), Ny, wgi1ym | G)

This is the probability of generating’Novering the spafp, ¢) (whatever the words in it) along
with the all the words outside it.

Using the notion outside probability, we can view the problem of computing the probability
of a string from the point of view of any word in it. Pick a wotg.. The following is true:

Pwim |G) = 3, P(wi k1), Wk, Wi i1ym, Ni | G)
= >; Pwig—1), Wk1ym, Ny, | G)
x P(wy, ’ W1, (k—1)5 me W(k+1)m» G)
= Oéj(k,k) X P(N] — wk)

We start with the observation that any assignment of a categouy, tiixes a probability for
analyses of the entire string compatible with that assignment. So we sum up such analysis proba-
bilities for each category Nin the grammar. We then apply the chain rule, and the independence
assumptions of PCFGs, and the definitioragfp, ¢) to derive an expression for the probability
of the entire string.

So if we knew thex;(k, k) values, computing the string probability would be easy.

We now show theoutside algorithm, a method for solving the more general problem of
computinga;(p, ¢). This is done topdown. We break it down as before into a base case and an
induction:

1. Base case
CYl(l, m) =1
= Oforj#1
2. Induction The situation is as pictured in Figyre 4 or Figije 5
Then

aj(p,q) = Djgry does 0+l P(wi(p-1), w(g + 1)m, N;’:e»Nfaqu?qH) ) (23)
[ngz Pwyp-1), w(g + 1)m, Neq’ng 1) NG,)]

The first double sum is the case of Figlfe 4. The second is the case of[Higure 5. In the first
case, we restrict the two categories not to be equal, so as not to count rules of the form:

X—=YY

twice.

Oéj(pv q) = [ng;é] Ze g+1 P(wl(P 1), W (q + 1)m Nf ) X P(ijoqv (q+1)e | N )
xP(w(q + 1)m | N{ (e ] D2y S0y Plwi ey, w(g + 1)m, Ngq)
xP(N; 70 | NZg) % P(weg—1) ’N ep-1))]

e(p—1)
= [ng;s] Ze at1 ag(p, e )P(l\ur — N/ NY)B,(q +1,¢e)]
[y ezt ag(e, PNV — NI N5y (e, p — 1)]



4 Finding the most probable parse

We defined; (p, ¢) as the highest probability parsewf, as N

What follows is a Viterbi like algorithm for finding the best parse. Corresponding to Viterbi
valkues we will have) values. Corresponding to a Viterbi bnacktrace we will have poointers
to the subtrees that help us produce our highest probvability parse for each (category,start, end)
triple.

1. Initialization : '
0i(p, p) = P(N" — wy)

2. Induction: | |
di(p,q) = max P(N' — N/ N*)d;(p, 7)dn(r + 1, 9)
1<j,k<n

p<r<gq

Store backtrace:

Ui(p,q) = argmaxP(N' — N/ N®)g;(p, 7)d.(r + 1, )
gk,

3. Termination: The probability of the max probability trees:
P(t) = 0,(1,m)

In addition we know the mother node and span of the highest probability patsandN
(p: q)-

In general given a mother node and a spap, ¢), we can construct a highest probability
parse tree below it by following thé& pointers:

Let \Pz(pvq) = (]7 k,’f‘)
Then left daughtes= N/
right daughter= N(,., ),
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Figure 3: Computation of inside probabilitg;(p, q)
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Figure 4: Computation of outside probability (left category)(p, ¢)
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