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A card deck

Let’s say we have a deck of standard cards and we are interesting in what suits and ranks we get when we draw a random card
(returning the card to the deck after each experiment).

Our mathematical description is as follows:

1 We chose a variable — call it card — to denote the outcomes of our various card-drawing experiments.

2 There 52 possible outcomes to an experiment:

{♠A, ♠K, ,♠Q, . . . }

3 The variable card is a random variable

4 The important thing about a random variable is that it can take different values. For example:

card = ♦J

5 The term usually comes up when we know something or want to something about the probabilities of certain events.
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Card deck (ctd.)

1 There are numerous classes of outcomes of interest:

Suits: ♠, ♦, ♣, ♥
Ranks: Ace, King, Queen, Jack, 10, . . .
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Random Variables

Let Ω be a set of outcomes (called the sample space): Ω = {x1, x2, . . . , xn} and let χ be some random variable that takes
values in Ω:

χ = x1, χ = x2, . . . χ = xn

P(χ = xi ) is the probability that χ is equal to xi :

0 ≤ P(χ = xi ) ≤ 1∑
xi∈Ω P(χ = xi ) = 1

Subsets of Ω are called events. The probability of an
event e1 is defined:

P(e1) =
∑

xi∈e1

P(χ = xi )

For any two events e1, e2,

P(e1 ∪ e2) =
∑

xi∈e1∪e2

P(χ = xi )

With e1, e2 disjoint,

P(e1 ∪ e2) = P(e1) + P(e2)
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Example

In our card-drawing example,
Ω = {♠A, ♠K, ♠Q, . . . }

χ the random variable, was card, and it took values in Ω

card = ♠A, card = ♥Q, card = ♣7, . . .

Assuming the cards are being dealt fairly:

P(card = ♣7) =
1

52
= 0.019 And similarly for any other card.

Suit events are subsets of Ω:

♣ = {♣A, ♣K, ♣Q, . . . }

So too for rank events:

king = {♣K, ♥K, ♦K, ♠K }
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Example, ctd.

P(♣) =
∑

xi∈♣ P(χ = xi ) = 13
52

= 1
4

= .25

P(♥) =
∑

xi∈♣ P(χ = xi ) = 13
52

= 1
4

= .25

P(King) =
∑

xi∈King P(χ = xi ) = 4
52

= 1
13

= .077

For disjoint events ♣, ♥, we get
P(♣ ∪ ♥) = .25 + .25 = .5

Compare P(♣ ∪ king)

P(king ∪ ♣) 6= 4
52

+ 13
52

= .25 + .077 = .327

P(king ∪ ♣) = 16
52

= .308

♣ = {♣A, ♣K, ♣Q, . . . }
king = {♣K, ♥K, ♦K, ♠K }
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Relative frequencies

We estimate probabilities by means of randomly drawn samples of events.

One way to estimate the probability of an event e1 from a sample S is to use the the relative frequency of e1 in S.

We use
| e1 |

for the frequency of e1 in S, the count of the number of times χ ∈ e1 in S, and | S | for the sample size.

We set P̂(e1), our estimate of the probability of e1, to the relative frequency of xi . That is,

P̂(e1) =
| e1 |

| S |
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Binomial Distribution

Suppose you toss a coin 100 times and you get 45 Heads.

Ω = { H, T }

Our sample size is 100. The count of heads events is 45. Using relative frequency to estimate the probability of heads, we get:

P̂(χ = head) =
45

100
= .45

Given that the coin has this probability for heads, we can ask, what is the probability of getting exactly 45 heads:

P(r | p) =

(
n
r

)
pr (1 − p)n−r

P(45 | p) =

(
100
45

)
p45(1 − p)55

= 0.08

Here p is the probability of heads, r the number of heads in the sample, and n the total sample size. This is called a binomial

distribution, because there are only two outcomes.
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Maximum Likelihood Estimate (MLE)

We might consider a number of different values for the probability of heads with that coin, and ask for each, what is the probability
of getting exactly 45 heads.

Using the formula for a binomial distribution, we can plot a graph whose x-axis is the probability of a head in each model, and

whose y axis is that is the probability of getting 45 heads with that coin.
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Likelihood Graph
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MLE Drawbacks

The probability of 45 heads in 100 throws is .08!

0.08 is not that high. The probability that a fair coin would produce this sample (that p = 0.5) is about 0.047, which is not
that much lower.

Try the experiment with a fair coin. Very rarely will you get 50 heads. The probability of getting exactly 50 heads with a
fair coin is also about 0.08.

The MLE may be the best guess of the true model, but it is still not all that likely to be right.

Bigger sample size helps discriminate models better.

Rare events are still hard to model well.
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Alternative: Bayesian Estimate

The Bayesian estimate balances the likelihood of a sample given a model, p(s | m), against some prior probability distribution
over models, µ(m). If we have a prior belief that coins are fair, we choose a prior distribution favoring the fair coin model, with
model probability dropping off rapidly as it moves away from fair:
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µ(m)
Bayesian prior

m̂ = argmax
m

µ(m) ∗ p(s | m)
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Joint Distributions

Joint distributions can be defined in terms of two random variables χ and γ:

p(x, y) = P(χ = x, γ = y)

So now we have probabilities for paired outcomes.

The marginal probability of outcome x is the sum of the probabilities of outcomes in which x is involved, which means summing
over all the y’s x is paired with; and similarly for y:

p
χ
(x) =

∑

γ

p(x, y) p
γ
(y) =

∑

χ

p(x, y)
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Conditional Probabilities

Conditional Probabilities are defined by the Chain Rule:

(a) p
χ|γ (x | y) =

p(x, y)

p(y)
(b) p(x, y) = p

χ|γ (x | y) ∗ P(y)
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Conditional Prob Distributions

Each way of fixing y defines a probability distribution:

∑

χ

p(x | γ = y) =
∑

χ

p(x, y)

p(y)

=

∑

χ

p(x, y)

p
γ
(y)

=
p(y)

p(y)

= 1

So p(x | γ = y) is a probability distribution.
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Chain Rule: review

(1) P(x1, x2) =P(x1) ∗ P(x2 | x1)

.

.

.
(n-1) P(x1, x2, . . . , xn)=P(x1) ∗ P(x2 | x1) · · · ∗ P(xn | x1, . . . xn−1)
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Chain Rule: review

(1) P(x1, x2) =P(x1) ∗ P(x2 | x1)

(2) P( x1, x2 , x3) = P(x1, x2) ∗ P(x3 | x1, x2 )

.

.

.
(n-1) P(x1, x2, . . . , xn)=P(x1) ∗ P(x2 | x1) · · · ∗ P(xn | x1, . . . xn−1)
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Chain Rule: review

(1) P(x1, x2) =P(x1) ∗ P(x2 | x1)

(2) P( x1, x2 , x3) = P(x1) ∗ P(x2 | x1) ∗ P(x3 | x1, x2 )

(3) P( x1, x2, x3 , x4) = P(x1, x2, x3) ∗ P(x4 | x1, x2, x3 )

.

.

.
(n-1) P(x1, x2, . . . , xn)=P(x1) ∗ P(x2 | x1) · · · ∗ P(xn | x1, . . . xn−1)
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Conditional Probs and Relative frequencies

The chain rule tells us how to estimate conditional probabilities using using relative frequencies:

P(a | b) =
P(a, b)

P(b)

∼
=

| a, b |

| S |

| b |

| S |

=
| a, b |

| b |

Instead of dividing the frequency by the size of the entire sample as we do for P(a,b), we divide by the size of the sample

restricted to b.
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Predicting words

We are interested in predicting the nth word given some history of n − 1 words:

Consider a history of 6 words:

I want to make a long-distance
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Motivations

Jurasky & Martin (pp. 83,84)

Apps

Speech and handwriting recognition:
how do you wreck a nice beach?
how do you recognize speech?

Choosing among the outputs of a Chinese statistical MT system:
he briefed to reporters on the chief contents of of the statement.
he briefed reporters on the chief contents of of the statement.
he briefed to reporters on the main contents of of the statement.
he briefed reporters on the main contents of of the statement.

Spelling correction: errors that are valid words:
They are leaving in about 15 minuets to go to her house.
The design an construction of the system will take more than a year.
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More subfields/apps

1 augmentative communication

2 authorship identification

3 predictive text input (cell phone texting)

4 part-of-speech tagging

5 language generation

6 word similarity
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The problem

We start with the problem: How do we formulate the probability of a string of words of length n?

We use the chain rule for the joint probablity of n events:

P(x1, x2, . . . , xn) = P(x1) ∗ P(x2 | x1) · · · ∗ P(xn | x1, . . . xn)

We abbreviate word sequences
w1, w2, , . . . , wn

as wn
1 .

We think of n-word word sequence wn
1 as a joint event consisting of word 1 occuring in the first position, word 2 occurring in the

second position, and so on. So the Chain rule applies!
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Word sequences

It follows immediately that:

P(w
n
1 ) = P(w1) ∗ P(w2 | w1) ∗ . . . P(wn | w

n−1
1

)

The problem with this formulation of the probability can be seen by looking at the last term:

Prob(wn | w
n−1
1

)

This is the probability of the last word given the entire sequence of words before it.

How would we compute such a thing?
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Sparseness

How to compute:

Prob(wn | w
n−1
1

)?

It’s easy!

| wn
1 |

| w
n−1
1

|

For instance:
| I want to make a long-distance call |

| I want to make a long-distance |

To do this right we need some corpus large enough to give us a representative sampling of of the 5-word string I want to make a
long-distance in which there is hopefully a representative sample of the 6-word string I want to make a long-distance call.
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Not enough data

The problem is that there isn’t enough data in the world to get such representative samples in most cases for even moderately
small n.

Consider a very small n. Consider Shakespeare.
Word token Count 884, 647
Word form Types 29, 066 including lots of proper nouns

Number of bigram types 29, 06622 = 844 million
Number of bigram tokens 884, 647

In any corpus of this size, we’re very unlikely to see most of the rarer bigrams.
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Shakespeare’s trigrams

Word token Count 884, 647
Word form Types 29, 066

Number of trigram types 29, 06623 = 25, 636, 000, 000, 000
Number of trigram tokens 884, 647

We get only a vanishing small sample of the entire space of trigrams. We’re likely to encounter only the most common ones.
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Other problems

1 After training on 1.5 million words from IBM Laser Patent Text Corpus, Bahl, et al (1983) reported that 23% of the
trigrams in unseen data were new!

2 Uggh! This is “the long tail of language”

3 Still worse, we need samples build out of independent events; In fact trigrams in a text aren’t indpenedent:

4 Each partially overlaps (and partly helps determine) the next one: I want to
want to make

to make a
make a long

5 Content words tend to clump (a word’s appearance in a document is one of the best predictors of its later appearance).

6 Auctorial tendencies (the Shakespeare corpus).
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Zipf’s Law

“The long tail of language”

1 Frequency of a word: How many times it occurs in a sample of a certain size

2 Rank: Most frequent word has rank 1; least frequent in a vocab of 20K has rank 20K.

3 Zipf’s Law:
f · r = k
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Zipf’s Law II

Almost all words are rare.
— Manning and Schuetze (1999)

Frequency of Frequencies in Tom Sawyer
(Manning & Schuetze, Table 1.2, p. 22)

Word
Frequency

Frequency of
Frequency

1 3993
2 1292
3 664
4 410
5 243
6 199
7 172

8-10 304
11- 50 540
51-100 99
¿ 100 102

8018
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Zipf’s Law III

Rank Word Frequency Use

1 the 3332 determiner (article)
2 and 2972 conjunction
3 a 1775 determiner
4 to 1725 preposition, infinitive marker
5 of 1440 preposition
6 was 1161 auxiliary verb
7 it 1027 personal/expletive pronoun
8 in 906 preposition
9 that 877 complementizer, demonstrative
10 he 877 personal pronoun
11 I 783 personal pronoun
12 his 772 possessive pronoun
13 you 686 personal pronoun
14 Tom 679 proper noun

18229 out of 71,370 (25.6%) Common words in Tom Sawyer
(Manning & Schuetze, Table 1.1, p. 21)
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A simplifying Assumption

Reduce the amount of history looked at (a Markov asumption)

P(wn | w1, . . . , wn−1) = P(wn | wn−1)

The chain rule calculation goes from:

P(w
n
1 ) = P(w1) ∗ P(w2 | w1) ∗ P(w3 | w1, w2) . . . P(wn | w

n−1
1

)

to
P(w

n
1 ) = P(w1) ∗ P(w2 | w1) ∗ P(w3 | w2) . . . P(wn | wn−1)
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Markov Assumptions

The assumption that the probability of an event is determined by some finite amount of history is called a Markov Assumption

A consequence of the Markov assumption is that a Probability model can be completely described by a very simple kind of
probabilistic finite-state automaton called a Markov Chain
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A Simple bigram Markov chain
Bigram for a simple language with a vocabulary of three words: a, b, and c.

a

P(a|a) bP(b|a)

c
P(c|a)

P(a|b)

P(b|b)

P(c|b)

P(a|c)

P(b|c)

P(c|c)
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String probability
String probabilties for abc and cba. P(abc) = P(a | S) ∗ P(b | c) ∗ P(c | b)

P(cba) = P(c | S) ∗ P(b | c) ∗ P(a | b)

S

a

P(a|S)

b

P(b|S)

c

P(c|S)

P(a|a)

P(b|a)

P(c|a)

P(a|b)

P(b|b)

P(c|b)

P(a|c)

P(b|c)

P(c|c)
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Markov Properties

Markov models can encode dependencies on histories of any finite length – at the cost of more states. Consider a vocab

of size 3:

1 bigram: 3 words = 3 possible histories = 3 states
2 trigram 3 * 3 histories = 9 states

In a trigram model, where should we go if we’re in state “ab” and we

see a “b”?

ab ?

Markov Chains: For any given emission, there is exactly one path through the network

Hidden Markov Models: For any given emission there are an arbitrary number of paths through the network

Ngram models are Markov chains.
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1 bigram: 3 words = 3 possible histories = 3 states
2 trigram 3 * 3 histories = 9 states
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Hidden Markov Models: For any given emission there are an arbitrary number of paths through the network
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Markov Properties

Markov models can encode dependencies on histories of any finite length – at the cost of more states. Consider a vocab

of size 3:

1 bigram: 3 words = 3 possible histories = 3 states
2 trigram 3 * 3 histories = 9 states

In a trigram model, where should we go if we’re in state “ab” and we

see a “b”? And what is the probability? P(b | b)? P(b | a)? P(b | ab)?

ab bb

P(b | ab)

Markov Chains: For any given emission, there is exactly one path through the network

Hidden Markov Models: For any given emission there are an arbitrary number of paths through the network

Ngram models are Markov chains.
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