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An ambiguous word
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Examples

He plays the bass well.

He caught a huge bass.

They served fried bass for lunch.

She carried her bass clarinet into class.

Charlie is the bass in a barbershop quartet.
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The Naive Bayes classifier

The Naive Bayes classifier is a probabilistic classifier.

We will estimate the probability of a word like bass in a document d
being a use of word sense s as follows:

P(s | d) ∝ P(s)
∏

1≤k≤nd

P(tk | s)

where nd is the number of context features in document d , taken
from a set of context features (words) for disambiguating bass.

P(tk |s) is the conditional probability of context feature tk occurring
in the same document with sense s.

P(tk |s) as a measure of how much evidence tk contributes that s is
the correct sense.

P(s) is the prior probability of sense s.

If a context does not provide clear evidence for one sense vs. another,
we choose the s with highest P(s).
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Maximum a posteriori class

Our goal in Naive Bayes classification is to find the “best” class.

The best class is the most likely or maximum a posteriori (MAP)
sense smap:

smap = argmax
s∈S

P̂(s|w) = arg max
s∈S

P̂(s)
∏

1≤k≤nd

P̂(tk |s)

Note that

P(s)
∏

1≤k≤nd

P(tk | s) (1)

is not the conditional probability, P(s | d). What it actually is is the
joint probability of the sense and the document.

P(s, d) = P(s)
∏

1≤k≤nd

P(tk | s)

For now, the conditional probability is not needed, because the joint
probability, which is easier to estimate, is proportional to it.
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Taking the log

Multiplying lots of small probabilities can result in floating point
underflow.

Since log(xy) = log(x) + log(y), we can sum log probabilities instead
of multiplying probabilities.

Since log is a monotonic function, the class with the highest score
does not change.

So what we usually compute in practice is:

cmap = argmax
s∈C

[log P̂(s) +
∑

1≤k≤nd

log P̂(tk |s)]
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Naive Bayes classifier
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Naive Bayes classifier

Classification rule:

cmap = argmax
s∈C

[ log P̂(s) +
∑

1≤k≤nd

log P̂(tk |s)]
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Naive Bayes classifier

Classification rule:

cmap = argmax
s∈C

[ log P̂(s) +
∑

1≤k≤nd

log P̂(tk |s)]

Simple interpretation:
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Each conditional parameter log P̂(tk |s) is a weight that indicates how
good an indicator tk is for s.
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Naive Bayes classifier

Classification rule:

cmap = argmax
s∈C

[ log P̂(s) +
∑

1≤k≤nd

log P̂(tk |s)]

Simple interpretation:

Each conditional parameter log P̂(tk |s) is a weight that indicates how
good an indicator tk is for s.
The prior log P̂(s) is a weight that indicates the relative frequency of s.
The sum of log prior and term weights is then a measure of how much
evidence there is for the document being in the class.
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Naive Bayes classifier

Classification rule:

cmap = argmax
s∈C

[ log P̂(s) +
∑

1≤k≤nd

log P̂(tk |s)]

Simple interpretation:

Each conditional parameter log P̂(tk |s) is a weight that indicates how
good an indicator tk is for s.
The prior log P̂(s) is a weight that indicates the relative frequency of s.
The sum of log prior and term weights is then a measure of how much
evidence there is for the document being in the class.
We select the class with the most evidence.
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Parameter estimation take 1: Maximum likelihood
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Parameter estimation take 1: Maximum likelihood

Estimate parameters P̂(s) and P̂(tk |s) from train data: How?
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Prior:

P̂(s) =
Ns

N

Jean Mark Gawron ( San Diego State University )Jean Mark Gawron: Naive Bayes 2011-04-08 9 / 33



Parameter estimation take 1: Maximum likelihood

Estimate parameters P̂(s) and P̂(tk |s) from train data: How?

Prior:

P̂(s) =
Ns

N

Ns : number of tokens of word w using sense s; N: total number of
tokens of word w .
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Parameter estimation take 1: Maximum likelihood

Estimate parameters P̂(s) and P̂(tk |s) from train data: How?

Prior:

P̂(s) =
Ns

N

Ns : number of tokens of word w using sense s; N: total number of
tokens of word w .

Conditional probabilities:

P̂(t|s) =
Tst∑

t′∈V Tst′

Tst is the number of tokens of t in training data with sense s

(includes multiple occurrences)

We’ve made a Naive Bayes independence assumption here:

P̂(tj , tk |s) = P̂(tj |s)P̂(tk |s, tj ) = P̂(tj |s)P̂(tk |s)
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The problem with maximum likelihood estimates: Zeros
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The problem with maximum likelihood estimates: Zeros

S=bassfish

X1=play X2=play X3=salmon X4=fry X5=hook

P(bassfish|d) ∝ P(bassfish) · P(play|bassfish) · P(play|bassfish)

· P(salmon|bassfish) · P(fry|bassfish) · P(hook|bassfish)

If hook never occurs with sense bassfish in the training set:

P̂(hook|bassfish) =
Tbassfish,hook∑
t′∈V Tbassfish,t′

=
0∑

t′∈V Tbassfish,t′
= 0
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The problem with maximum likelihood estimates: Zeros

(cont)

If there were no occurrences of hook in documents in class bassfish,
we’d get a zero estimate:

P̂(hook|bassfish) =
Tbassfish,hook∑
t′∈V Tbassfish,t′

= 0

→ We will get P(bassfish|w) = 0 for any document that contains
hook! No matter how much positive evidence there is for one of the
senses.

Zero probabilities cannot be conditioned away.
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To avoid zeros: Add-one smoothing
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To avoid zeros: Add-one smoothing

Before:

P̂(t|s) =
Tst∑

t′∈V Tst′
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To avoid zeros: Add-one smoothing

Before:

P̂(t|s) =
Tst∑

t′∈V Tst′

Now: Add one to each count to avoid zeros:

P̂sm(t|s) =
Tst + 1∑

t′∈Vw
(Tct′ + 1)

=
Tst + 1

(
∑

t′∈V Tst′) + |Vw |
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To avoid zeros: Add-one smoothing

Before:

P̂(t|s) =
Tst∑

t′∈V Tst′

Now: Add one to each count to avoid zeros:

P̂sm(t|s) =
Tst + 1∑

t′∈Vw
(Tct′ + 1)

=
Tst + 1

(
∑

t′∈V Tst′) + |Vw |

Vw is the set of context features for w (bass, the word we are
disambiguating), and |Vw | is the number of such features.
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Naive Bayes: Summary
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Naive Bayes: Summary

Estimate parameters from the training corpus using add-one
smoothing
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Naive Bayes: Summary

Estimate parameters from the training corpus using add-one
smoothing

For a new document, for each class, compute sum of (i) log of prior
and (ii) logs of conditional probabilities of the terms
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Naive Bayes: Summary

Estimate parameters from the training corpus using add-one
smoothing

For a new document, for each class, compute sum of (i) log of prior
and (ii) logs of conditional probabilities of the terms

Assign the document to the class with the largest score
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Naive Bayes: Training

TrainMultinomialNB(S,D,w)
1 V ← ExtractFeatures(D,w)
2 N ← CountOccurrences(D,w)
3 for each s ∈ S

4 do Ns ← CountOccurrencesOfSense(D, s)
5 prior [s]← Ns/N
6 texts ← ConcatTextOfAllContextsWithSense(D, s)
7 for each t ∈ V

8 do Tst ← CountTokensOfTerm(texts , t)
9 for each t ∈ V

10 do condprob[t][s]← Tst+1∑
t′ (Tst′+1)

11 return V , prior , condprob
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Naive Bayes: Testing

ApplyMultinomialNB(S,V , prior , condprob, d)
1 W ← ExtractFeatureTokensFromDoc(V , d)
2 for each s ∈ S

3 do score[c]← log prior [s]
4 for each t ∈W

5 do score[s]+ = log condprob[t][s]
6 return argmaxs∈S score[s]
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Exercise

For our feature set, we often choose the n most frequent content words in our
document set, retaining duplicates, leaving out w (bass). Here we choose fry, play,

clarinet, salmon, hook, and guitar. Note that guitar occurs in neither the test set nor
training set. Assume the context window for training

docID words in context in s = bassfish?

training set 1 fry fry yes
2 play play clarinet no
3 salmon fry yes
4 play yes

test set 5 play play fry hook play play play play play ?

Estimate parameters of Naive Bayes classifier
Classify test document
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Unsmoothed Example: Parameter estimates

Priors: P̂(s) = 3/4 and P̂(s) = 1/4
Conditional probabilities:

P̂(fry|s) = 3/5

P̂(salmon|s) = P̂(play|s) = 1/5

P̂(hook|s) = 0/5 = 0

P̂(clarinet|s) = 1/3

P̂(play|s) = 2/3

The denominators are 5 and 3 because the lengths of texts and texts are 5
and 3, respectively.
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Smoothing Example: Parameter estimates

Priors: P̂(s) = 3/4 and P̂(s) = 1/4
Conditional probabilities:

P̂sm(fry|s) = (3 + 1)/(5 + 6) = 4/11

P̂sm(salmon|s) = P̂sm(play|s) = (1 + 1)/(5 + 6) = 2/11

P̂sm(hook|s) = (0 + 1)/(5 + 6) = 1/11

P̂sm(clarinet|s) = (1 + 1)/(3 + 6) = 2/9

P̂sm(play|s) = (2 + 1)/(3 + 6) = 3/9 = 1/3

The denominators are (5 + 6) and (3 + 6) because the lengths of texts and
texts are 5 and 3, respectively, and because the constant |Vw | is 6 as the
feature set consists of six terms.
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Example: Classification

P̂sm(s|d5) ∝ 3/4 · (2/11)7 · 4/11 · 1/11 ≈ 1.643 ∗ 10−7

P̂sm(s |d5) ∝ 1/4 · (1/3)7 · 1/9 · 1/9 ≈ 2.389 ∗ 10−7

Thus, the classifier assigns the test document to s = bassfish.
The reason for this classification decision is that the seven occurrences of
the negative indicator play in d5 outweigh the occurrence the positive
indicator fry.
Note: the terms to the right of ∝ are what we were referring to as joint
probabilities in first few slides.
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Normalizing Joint probabilities

To get from joint probability P̂(s1, t1,nd ) to the conditional probability
P̂(s1 | t1,nd ) we must normalize:

(a) P̂(s1, t1,nd ) = P̂(s)
∏

1≤k≤nd
P̂(tk |s1) = 0.00099

(b) P̂(s1|t1,nd ) = P̂(s1, t1,nd )/P̂(d)

(c) P̂(s2, t1,nd ) = P̂(s)
∏

1≤k≤nd
P̂(tk |s1) = 0.00001

(d) P̂(s2|t1,nd ) = P̂(s2, t1,nd )/P̂(d)

(e) P̂(s1|t1,nd ) + P̂(s2|t1,nd ) =
P̂(s1,t1,nd )+P̂(s2,t1,nd )

P̂(d)
= 1.0

(f) P̂(s1, t1,nd ) + P̂(s2, t1,nd ) = P̂(d) = 0.0001

(g) P̂(s1|t1,nd ) = 0.99, P̂(s2|t1,nd ) = 0.01.
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How to normalize

P̂(s1|t1,nd ) =
P̂(s1, t1,nd )∑
i P̂(si , t1,nd )

In our example there are only two senses, so:

P̂(s1|t1,nd ) =
P̂(s1, t1,nd )

P̂(s1, t1,nd ) + P̂(s2, t1,nd )
=

.00099

.00099 + .00001
=

.00099

.001
= .99.

Since
P̂)(t1,nd ) =

∑

si

P̂(si , t1,nd ) = P̂(s1, t1,nd ) + P̂(s2, t1,nd )

this is just a rewrite of our definition of conditional probability:

P̂(s1|t1,nd ) =
P̂(s1, t1,nd )

P̂(t1,nd )
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Time complexity of Naive Bayes
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Time complexity of Naive Bayes

mode time complexity

training Θ(|D|Lave + |S||V |)
testing Θ(La + |S|Ma) = Θ(|S|Ma)

Lave: average length of a training doc, La: length of the test doc, Ma:
number of distinct feature terms in the test doc, D: training set, V :
vocabulary, S: set of senses
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counts.

Generally: |S||V | < |D|Lave
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Time complexity of Naive Bayes

mode time complexity

training Θ(|D|Lave + |S||V |)
testing Θ(La + |S|Ma) = Θ(|S|Ma)

Lave: average length of a training doc, La: length of the test doc, Ma:
number of distinct feature terms in the test doc, D: training set, V :
vocabulary, S: set of senses

Θ(|D|Lave) is the time it takes to compute all counts.

Θ(|S||V |) is the time it takes to compute the parameters from the
counts.

Generally: |S||V | < |D|Lave

Test time is also linear (in the length of the test document).

Thus: Naive Bayes is linear in the size of the training set (training)
and the test document (testing). This is optimal.
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Naive Bayes: Analysis
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Naive Bayes: Analysis

Now we want to gain a better understanding of the properties of
Naive Bayes.
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Now we want to gain a better understanding of the properties of
Naive Bayes.

We will formally derive the classification rule . . .
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Naive Bayes: Analysis

Now we want to gain a better understanding of the properties of
Naive Bayes.

We will formally derive the classification rule . . .

. . . and state the assumptions we make in that derivation explicitly.
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Derivation of Naive Bayes rule
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Derivation of Naive Bayes rule

We want to find the class that is most likely given the document:

cmap = argmax
s∈C

P(s|d)

Apply Bayes rule P(A|B) = P(B|A)P(A)
P(B) :

cmap = argmax
s∈C

P(d |s)P(s)

P(d)

Drop denominator since P(d) is the same for all classes:

cmap = argmax
s∈C

P(d |s)P(s)
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Too many parameters / sparseness

cmap = argmax
s∈C

P(d |s)P(s)

= argmax
s∈C

P(〈t1, . . . , tk , . . . , tnd 〉|s)P(s)
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Too many parameters / sparseness

cmap = argmax
s∈C

P(d |s)P(s)

= argmax
s∈C

P(〈t1, . . . , tk , . . . , tnd 〉|s)P(s)

There are too many parameters P(〈t1, . . . , tk , . . . , tnd 〉|s), one for
each unique combination of a class and a sequence of words.

We would need a very, very large number of training examples to
estimate that many parameters.

This is the problem of data sparseness.
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Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, we make the
Naive Bayes conditional independence assumption:

P(d |s) = P(〈t1, . . . , tnd 〉|s) =
∏

1≤k≤nd

P(Xk = tk |s)

We assume that the probability of observing the conjunction of attributes
is equal to the product of the individual probabilities P(Xk = tk |s).
Recall from earlier the estimates for these priors and conditional
probabilities: P̂(s) = Nc

N
and P̂(t|c) = Tct+1

(
∑

t′∈V Tct′)+B
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Generative Model

S=bassfish

X1=play X2=clarinet X3=salmon X4=fry X5=hook

P(s|d) ∝ P(s)
∏

1≤k≤|nd |
P(tk |c)
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Generative Model

S=bassfish

X1=play X2=clarinet X3=salmon X4=fry X5=hook

P(s|d) ∝ P(s)
∏

1≤k≤|nd |
P(tk |c)

Generate a sense with probability P(s)

Generate each of the context words, conditional on the sense, but
independent of each other, with probability P(tk |s)

To classify docs, we “simulate” the generative process and find the
sense that is most likely to have generated the doc.
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Second independence assumption
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P̂(tk1 |c) = P̂(tk2 |c)
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Second independence assumption

P̂(tk1 |c) = P̂(tk2 |c)

For example, for a token of bass using the sense bassfish, the
probability of generating fry in the first position in the document is
the same as generating it in the last position.
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Second independence assumption

P̂(tk1 |c) = P̂(tk2 |c)

For example, for a token of bass using the sense bassfish, the
probability of generating fry in the first position in the document is
the same as generating it in the last position.

The two independence assumptions amount to the bag of words
model (information retrieval: order of words in documents does not
matter).
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A different Naive Bayes model: Bernoulli model

Uplay=0 Uclarinet=1 Usalmon=0 U fry=1 Uhook=1

C=bassfish

multinomial cmap = argmaxs∈C [log P̂(s) +
∑

1≤k≤|nd |
log P̂(tk |s)]

bernoulli cmap = argmaxs∈C [log P̂(s) +
∑

1≤k≤|Vw |
log P̂(tk |s)]
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Violation of Naive Bayes independence assumptions
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Violation of Naive Bayes independence assumptions

The independence assumptions do not really hold of documents
written in natural language.
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Violation of Naive Bayes independence assumptions

The independence assumptions do not really hold of documents
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Conditional independence:
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∏
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∏

1≤k≤nd

P(Xk = tk |s)
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Examples for why conditional independence assumption is not really
true?
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Violation of Naive Bayes independence assumptions

The independence assumptions do not really hold of documents
written in natural language.

Conditional independence:

P(〈t1, . . . , tnd 〉|s) =
∏

1≤k≤nd

P(Xk = tk |s)

Positional independence: P̂(tk1 |c) = P̂(tk2 |c)

Exercise

Examples for why conditional independence assumption is not really
true?
Examples for why positional independence assumption is not really
true?

How can Naive Bayes work if it makes such inappropriate
assumptions?
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Why does Naive Bayes work?

Naive Bayes can work well even though conditional independence
assumptions are badly violated.

Example:
s1 s2 sense selected

true probability P(s|d) 0.6 0.4 s1

P̂(s)
∏

1≤k≤nd
P̂(tk |s) 0.00099 0.00001

NB estimate P̂(s|d) 0.99 0.01 s1
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Illustration

Suppose the featues are NOT independent, causing, say,
underestimation P(s2 | d) = 0.01).

P(s2|tk , tj) > P̂(s1|tk)P̂(s2|tj)

Then P(s1|tk , tj) will be overestimated (0.99):

P(s1|tk , tj) < P̂(s1|tk)P̂(s1|tj)

As long as NB overestimates the larger prob, it will still make correct
classification decisions. Even if NB overestimates the smaller prob,
the decision might still be right.

Classification is about predicting the correct class and not about
accurately estimating probabilities.

Correct estimation ⇒ accurate prediction.

But not vice versa!
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Naive Bayes is not so naive

Naive Bayes has won some bakeoffs (e.g., KDD-CUP 97)

More robust to nonrelevant features than some more complex learning
methods

More robust to concept drift (changing of definition of class over
time) than some more complex learning methods

Better than methods like decision trees when we have many equally
important features

A good dependable baseline for text classification (but not the best)

Optimal if independence assumptions hold (never true for text, but
true for some domains)

Very fast

Low storage requirements
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