
1 Expectation

Assume Ω is a sample space

Ω = {x1, x2, x3, . . . xn}

Assume p is a probability distribution over Ω. Assume f is a function from
Ω to real numbers:

f ∈ RΩ

We define the expected value of f:

E(f) = p(x1)f(x1) + p(x2)f(x2) + p(x3)f(x3) + . . . + p(xn)f(xn)
=

∑
p(xi)f(xi)

2 Entropy

We assume a random variable X defined on an alphabet of symbols χ with
pmf p. So the kinds of events we are now interested in are symbol occur-
rences. And we assume that the information measure of each symbol x,
x ∈ χ is:

I(x) = − log p(x)

We have:
E(I) =

∑
p(x)(− log p(x)) = −

∑
p(x) log p(x)

We call E(I) the entropy of random variable X. It usually written H:

H(X) = −
∑

x∈χ

p(x) log p(x)

It is often written directly as a function of the pmf p:

H(p) = −
∑

x∈Dom(p)

p(x) log p(x)

3 Entropy of Joint and Conditional Distributions

The entropy of a joint distribution is the same as the entropy of a distribution
of a single random variable, except that the elements of the sample space
are pairs:

H(X,Y ) = −
∑

x∈χ

p(x, y) log p(x, y)
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Conditional entropy is somewhat different:

H(Y |X) =
∑

x∈χ

p(x)H(p(Y |X = x))

Recall that p(Y |X) is not a real pmf. What we do is sum up the entropies
of each of the conditional pmfs of the form p(Y | X=x), weighting each by
the probability of x

H(Y |X) =
∑

x∈χ

p(x)[−
∑

y∈χ

p(y|x) log p(y|x)]

Multiplying p(x) into the inner sum:

H(Y |X) = −
∑

x∈χ

∑

y∈χ

p(x)p(y|x) log p(y|x)

Using the Chain rule:

H(Y |X) = −
∑

x∈χ

∑

y∈χ

p(x, y) log p(y|x)

It turns out this is a rather natural definition of H(X|Y) because it leads
to a chain rule for entropy (proof, p. 64 of text):

H(X,Y ) = H(Y |X) + H(X)
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