Word2Vec Assignment

Jean Mark Gawron

April 6, 2021

1 PMI

$\mathrm{w} \backslash \mathrm{c}$	global_JJ	classic_JJ	ancient_JJ	liberal_JJ
politician_NN	0	5	0	3
agenda_NN	1	1	1	4
conservative_NN	0	4	0	1
liberal_NN	1	6	0	1
cabal_NN	5	1	4	2

Find the following:, using the formulae in vectors1.pdf, slides slides 22-24.
1.1. $p(w=$ politician_NN, $c=$ liberal_JJ $)$
1.2. $p(w=$ politician -NN$)$
1.3. $p(c=$ liberal」JJ $)$
1.4. Compute the PPMI score for word politician $N N$ and context liberal_JJ.
1.5. Suppose $P(w=i \mid c=j)$ is equal to $P(w=i)$. What can we say about $\operatorname{PPMI}(\mathrm{w}=\mathrm{i}, \mathrm{c}=\mathrm{j})$? If you don't remember the discussion of this case in class, use the chain rule to turn this into a fact about $\mathrm{P}(\mathrm{i}, \mathrm{j})$.
1.6. Is it possible for the PMI value of target word i and context word j to be negative?
1.7. When is PPMI undefined?

2 Cosine similarity

Use slides 33-37 to help with the following.
2.1. Using the counts (rather than the PPMI values), compute the cosine similarity of target words conservative and politician. Note: It should be a number between 0 and 1 .
2.2. Same two words: Now compute the cosine similarity using vectors with PPMI values. Note: For this problem, think of the log of a probability of 0 as a negative number with a very high absolute value. So for the purposes of PPMI any 0 probabilities are going to yield a PPMI of 0 . Show at least this much of your work: What are the two PPMI vectors? What are the vectors after they are divided by their length? (We say the have been normalized).

