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Abstract
This document provides a model answer for the Maximum Entropy assignment, as well as some general
comments on the goals of this assignment.
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1. Baseline Facts
The annotated sense corpus we used for this exercise and
the senseval format it is represented in is due to Leacock
et al. (1998). The senses we used are those available in a
large semantic graph of English called WordNet, which is
available in NLTK:1

>>> from nltk.corpus import wordnet as wn
>>> for ss in wn.synsets(’hard’,’a’)[0:4]:

print ss.definition()
print

This prints out the 4 top senses of the adjective hard. The
3 we use in this exercise are shown in Table 1.

We started with a baseline system that prunes stopwords
like the and of from the vocabulary and then uses the 100
most frequent words as features, attempting to use the word
context in which hard occurs to determine which sense it is
used in. With 100 iterations of training it earns a score of
86.3% on the test.

1You should have NLTK installed along with the NLTK corpora.

Log likelihood Accuracy
Training -.28557 .846
Test .863

2. Better systems

2.1 How to improve the baseline
The kind of max ent system used in this assignment represents
a sentence as the set of vocabulary items present in the sen-
tence, where the vocabulary is chosen in advance, and words
not in the vocabulary are ignored.

The baseline system can be improved in a vareity of ways,
the simplest being feature engineering. Adding noun fea-
tures that strongly correlate with one of three senses helps
considerably, particularly since many of these nouns did not
appear in the baseline system since they were too infrequent
to make the cut. This suggests something that turns out to be
a basic principle of Natural Language Processing: Choosing
features by frequency is a bad strategy.

The way to add arbitrary word features was simply to add
words one by one to vocab dictionary in the definition of the
extract vocab function in call extract event.py.
A fictional count was necessary for consistency, but this count
made no difference. This was explained in the slides provid-
ing information on the assignment. For example, to add the
noun cover (as opposed to the verb cover), you added a line
containing the following dictionary update:

vocab[‘cover_NN’] = 1000

Many of you had considerable success with such features.
If you did nothing more than add such dictionary updates

to the code, you were adding features to the existing 100
features in the baseline system. If you wanted to omit all 100
baseline features and just use those you selected, you needed
to add a line before all your dictionary updates to empty the
vocab dictionary:

vocab = dict()



Maximum Entropy and Naive Bayes Assignment — 2/7

Sense Freq(%) Definition
HARD1 79.7 not easy; requiring great physical or mental effort to accomplish or comprehend or endure

(hard subject, hard journey);
HARD2 11.6 dispassionate, very strong or vigorous (amalgam of senses 2 and 4 in WordNet (hard work,

hard look);
HARD3 8.7 resisting weight or pressure (opposite of soft, hard pillow, hard metal)

Table 1. The three senses in the Senseval data

This sets vocab to be an empty dictionary. The numbers
reported in the next section are all for systems that only use
IG features. So the dictionary was emptied before adding IG
features.

2.2 Example systems
The best system shown below used a 200-word vocabulary
selected by an information gain algorithm. Let’s call these
the IG features. No student was expected to find exactly
this set of features, but the IG system shows that feature
selection/feature engineering can improve the accuracy of the
system considerably.

The table in Table 2 shows that IG features helped, and
that number of iterations used in running the IIS algorithm
also mattered.

Feats Iters Log Lkly Acc
Base 100 Training -.28557 .846

Test .863
200 100 Training -.30445 .831

Test .859
200 Training -.24869 .880

Test .902
300 Training -.22139 .896

Test .910
400 Training -.20568 .898

Test .907
100 100 Training -.26166 .873

Test .900
200 Training -.21813 .889

Test .905
300 Training -.20128 .893

Test .902

Table 2. System comparisons (best in bold)

Summing up: The best system used 200 IG features and
ran for 300 iterations. In the best system, accuracy improved
to 91.0% on the test. In the 100 feature system, increasing
from 200 to 300 iterations consistently reduced the test score.
In general, more iterations guarantees higher likelihood, but
does not guarantee a better test score. Neverthless, more it-
erations can be very helpful, as is particularly evident with
the 200 feature system. The poor (lower than baseline) perfor-
mance of the 200 IG feature system at 100 iterations is due
to the fact that the incremental improvement in likelihood is

likely to be slower with more features, and 100 iterations is
not enough to achieve a reasonable likelihood score with 200
features (notice the training set likelihood for that system is
worse than the baseline). The improvement with 200 and 300
iterations is considerable.

Looking at the Precision/Recall numbers for each class
gives some insight as to how the IG systems achieved their
improvement. This is shown in

Feats Iters
Baseline 100 Label Precision Recall

HARD1 .864 .997
HARD2 .941 .485
HARD3 .500 .050

200 100
HARD1 .855 1.000
HARD2 .667 .061
HARD3 1.000 .325

200
HARD1 .903 .994
HARD2 .842 .485
HARD3 .950 .475

300
HARD1 .903 .994
HARD2 .842 .485
HARD3 .950 .475

400
HARD1 .915 .985
HARD2 .783 .545
HARD3 .917 .550

100 100
HARD1 .898 .994
HARD2 .889 .485
HARD3 .947 .450

200
HARD1 .908 .991
HARD2 .857 .545
HARD3 .905 .475

300
HARD1 .907 .988
HARD2 .810 .545
HARD3 .905 .475

Table 3. Precision and Recall scores for each of the classes

Comparing the baseline system at the top of Table 3 to
the winner, the 200-feat 300-iteration system, we see the most
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dramatic improvement comes from improved performance on
HARD3, the sense that is the opposite of soft. Improving pre-
cision on HARD1 is also important. This is done by guessing
HARD1 (the most frequent sense) more reliably, because of
developing better indicators of SENSE1, and also by guessing
SENSE1 less often, because of relying on indicators of the
other two senses. We will try to understand that improved
performance below.

2.3 The features
Table 4 shows the list of 100 words used in the 100 IG
features system, a strict subset of the 200-feature system. Bear
in mind as you look that this isn’t the actual list of features
being used by the Max Ent system. The actual features are
pairings of each word with a class (you’ll see this in the
discussion of most informative features).2

The list of words in Table 4. is intended to convey an idea
of what the feature selection algorithm can discover. By and
large the features are a higgledyiggledy assortment, but there
are some features that the feature selection algorithm which
have a clear link to the improved performance of the 200 IG
feature system. See if you can identify them, You might focus
first on looking for words that are good indicators of sense
HARD3.

Eyeballing the features in Table 4 gives us some in-
sight as to how improved performance on sense HARD3 was
achieved: Quite naturally, there are a number of Noun fea-
tures; the noun hard modifies often disambiguates the sense
(hard winter[HARD1], hard feeling(s)[HARD2], and hard
water[HARD3]). Among these there a number of relatively
low count nouns denoting physical objects which will identify
HARD3: wall (10 tokens), wood (11 tokens), cheese (16 to-
kens), surface (37 tokens), shell (16 tokens), seat (18 tokens),
cover (29 tokens), plastic (15 tokens), ice (10 tokens). Since
the cutoff point for making the list of the top 100 most fre-
quent words was a frequency of 73, none of these words were
features in the baseline system. We will see further evidence
of the significance of such features when we look at the most
informative features.

The lesson here is that choosing features by frequency is
a bad strategy in a classification setting. A lot of the high
information words are low frequency.

3. Most informative Features
Table 5 shows the most informative features for both the Max
Ent and NB systems. We will restrict our attention to the 200
iteration, 100 IG feature system. They were very close in
performance, and there is very little change in informative
features between these systems (because the 100 features are
the top half of the 200 features, when scored by information
gain).

The maximum entropy list includes both positive and neg-
ative feature coefficients, corrsponding to whether a feature

2The 200 feature IG system actually has only 189 distinct words, since
there were 11 words that made the cut when paired with more than one class.

Test Acc
Baseline MaxEnt .863
Baseline NB .878
100 IG Feats NB .902
200 IG Feats NB .902
Table 6. Naive Bayes results

has a strong positive or negative correlation with a class. The
Naive Bayes feature list shows the features that most increased
the odds of one class versus another.

We see significant overlap in which words provide the
most information among two feature sets, despite the fact
that they’re different kinds of features (a Max Ent feature
includes a specific class, because it is used in modeling the
joint probability of a feature and class).

wheat NN, cover NN, get VB, plastic NN, sur-
face NN, work NN, cheese NN, material NN,
eye NN, find VB look NN, shell NN, wall NN

As expected, we see a number of physical object nouns in
both sets, consistent with our thoughts about improved per-
formance with SENSE3. We will see in the next section that
Naive Bayes classification also benefited with this feature set.

4. Naive Bayes
Estimating a Naive Bayes model is way more computation-
ally efficient than than estimating a Max Ent model, and the
bottom line is that with the right feature set, and in situations
where there is a very limited amount of data (this one), Naive
Bayes can be quite competitive with Maximum Entropy. It is
always worth trying, because it usually provides insight into
the structure of the problem, and because it does not cost a lot
of computing time.

Table 6 shows that the baseline Naive Bayes test scores
were significantly better than the baseline Maximum Entropy
test scores. The baseline NB scores improved with the 100
feature IG system, as one might expect, but the interesting
surprise is that there was no change at all in accuracy with
200 feature system.

The lack of improvement with 200 features is probably
because those new features did not add a lot of discriminating
power to the classifier. This is supported by the fact that there
was very little change in the most informative features with
the 200 feature system. This suggests that information gain
was doing a good job of feature ranking for this task.

Table 7 shows the Baseline, 100 and 200 feat Precision
and Recall breakdowns for Naive Bayes.

The 100 and 200 IG Feat numbers are better than the
baseline, especially in HARD3, but very similar to each other.
Comparing the 100 IG feat system to the 200 IG feat system,
various trade-offs have been made resulting in no improve-
ment in overall accuracy. For example the 200 feature system
has better Recall for HARD3, but pays for it with worse Pre-
cision. Although performance for both Precision and Recall
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’s VBZ
’t NN
, ,
25 CD
3 CD
4 CD
album NN
already RB
answer NN
believe VB
character NN
cheese NN
choice NN
clothe NN
comfortable JJ
companie NN
cover NN
cream NN
democrats NNPS
doing VBG
economic JJ
especially RB
evidence NN

extremely RB
eye NN
face NN
feeling NN
find VB
finding VBG
five CD
fresh JJ
generally RB
get VB
girl NN
great JJ
group NN
harder JJ
hardest JJ
hot JJ
ice NN
industry NN
joe NNP
kid NN
learned VBD
lesson NN

like VB
line NN
look NN
look VBP
material NN
needed VBN
next JJ
north NNP
other NN
parent NN
place NN
plastic NN
police NN
possible JJ
pretty RB
put VB
record NN
red JJ
rock NN
say VB
say VBP

school NN
seat NN
see VB
sense NN
shell NN
show NN
six CD
small JJ
soft JJ
story NN
success NN
sunday NNP
surface NN
team NN
time NN
to TO
used VBN
very RB
voice NN
wall NN

war NN
water NN
wheat NN
willing JJ
wine NN
winter NN
wood NN
work NN
world NN

Table 4. Top 100 features

Feats Label Precision Recall
Base HARD1 .908 .964

HARD2 .818 .545
HARD3 .567 .425

200 HARD1 .919 .973
HARD2 .720 .545
HARD3 .857 .600

100 HARD1 .924 .978
HARD2 .692 .545
HARD3 .833 .625

Table 7. Precision and recall scores for each class with Naive
Bayes

is better with HARD1, it is compensated for by a loss of
Precision with HARD2.

Like the Max Ent model, the NB model improves because
of massive improvement in recognizing HARD3. As we saw
in the last section, the source of this improvement can be
inferred from inspecting the most informative features, which
have changed considerably from the NB baseline, because
of a number of low frequency nouns that help disambiguate
senses.

5. Additional questions
1. You were asked about the pdist object associated with

one example, and what prob it returned when applied
to a class (such as HARD1):

>>> (feats, label) = test[0]

>>> pdist =
nb_classifier.prob_classify(feats)

>>> pdist.prob(’HARD3’)

If you applied pdist to all three classes as suggested
in the hint, you saw the three probabilities added up
to 1.0, strongly suggesting that what this pdist object
represented was the probability of the class given the
feature set pdist was made from (P(class | feats)).

2. A question you were asked on the assignment is what
features were responsible for the probability of one
class being so high on test[7].

First let’s use what we learned above to see how test[7]
is classified:

>>> (feats, label) = test[7]
>>> pdist =

nb_classifier.prob_classify(feats)
>>> pdist.prob(’HARD1’)
0.9911 ...
>>> pdist.prob(’HARD3’)
0.0012 ...
>>> pdist.prob(’HARD2’)
0.0076 ...

So this is very confidently classified as HARD1. Let’s
see why: Here’s how to find out what features it had
in the baseline system (the answer may change in your
various systems). You just look at the feature dictionary,
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Max Ent Naive Bayes
Weight Word Class

2.071 north NNP HARD3
1.987 plastic NN HARD3
1.940 look VBP HARD2
1.870 shell NN HARD3
1.863 surface NN HARD3
1.843 feeling NN HARD2
1.840 comfortable JJ HARD3
1.833 hot JJ HARD3
1.806 democrats NNPS HARD2
1.792 evidence NN HARD2
1.733 wall NN HARD3
1.725 line NN HARD2
1.713 cover NN HARD3
1.703 25 CD HARD2
1.656 like VB HARD2
1.645 red JJ HARD3
1.626 answer NN HARD2
1.618 work NN HARD2
1.585 material NN HARD3
1.567 look NN HARD2

-3.850 look NN HARD1
-3.676 cover NN HARD1
-3.422 find VB HARD2
-2.644 get VB HARD3
-2.629 look NN HARD3
-2.598 harder JJ HARD3
-2.496 s VBZ HARD3
-2.484 work NN HARD3
-2.479 cheese NN HARD1
-2.453 rock NN HARD1
-2.398 surface NN HARD1
-2.330 wall NN HARD1
-2.318 shell NN HARD1
-2.286 soft JJ HARD1
-2.216 find VB HARD3
-2.210 wheat NN HARD1
-2.179 feeling NN HARD3
-2.157 plastic NN HARD1
-2.123 rock NN HARD2
-2.092 work NN HARD1

Word Classes Odds
cover NN HARD3 : HARD1 72.5 : 1.0
wheat NN HARD3 : HARD1 71.2 : 1.0
look NN HARD2 : HARD1 62.6 : 1.0
surface NN HARD3 : HARD1 53.2 : 1.0
cheese NN HARD3 : HARD1 52.6 : 1.0
shell NN HARD3 : HARD1 46.5 : 1.0
rock NN HARD3 : HARD1 42.2 : 1.0
wall NN HARD3 : HARD1 40.3 : 1.0
plastic NN HARD3 : HARD1 39.0 : 1.0
soft JJ HARD3 : HARD1 38.5 : 1.0
ice NN HARD3 : HARD1 34.1 : 1.0
work NN HARD2 : HARD3 22.4 : 1.0
red JJ HARD3 : HARD1 19.3 : 1.0
wood NN HARD3 : HARD1 17.3 : 1.0
cream NN HARD3 : HARD1 17.3 : 1.0
feeling NN HARD2 : HARD1 16.2 : 1.0
material NN HARD3 : HARD1 15.5 : 1.0
find VB HARD1 : HARD2 14.1 : 1.0
get VB HARD1 : HARD3 12.5 : 1.0
eye NN HARD2 : HARD1 11.8 : 1.0

Table 5. Most Informative Features



Maximum Entropy and Naive Bayes Assignment — 6/7

and print out just the words in the vocab for which the
feature value was True (the word was present in the
sentence):

>>> (f,cls) = test[7]
>>> for (k,v) in f.iteritems():

if v:
print k

’s_VBZ
said_VBD
to_TO

All three of these features can be looked up using the
the Naive Bayes most informative features function,
and all three lean toward HARD1:

’s VBZ = True HARD1 : HARD3 8.9 : 1.0
to TO = True HARD1 : HARD3 2.4 : 1.0
said VBD = True HARD1 : HARD3 2.4 : 1.0

Looking at the code at the end of the call maxent.py
file shows how to call the most informative features
function, and with a little variation on what’s there you
can look at more features. For example:

nb classifier.show most informative features(n=200)

6. Takeaways

1. Feature selection is your friend.

2. Information gain is a useful way of discovering features
that are useful, Feature selection by intuition is hard
(in sense HARD1) and unlikely to be optimal with
natural language problems. But you can discover facts
about the structure of a classification problem this way,
and intuition is best guided by careful error analysis.
Many of you discovered physical object features that
improved your performance with HARD3. It was in
observing how even useful bag-of-word features could
mislead us that we saw that multi-word or syntactically
informed features might help.

3. More iterations of the IIS algorithm does not necessarily
help, but it may be necessary for larger feature sets.

4. Feature selection by frequency is a really bad idea. Very
rare features are often the best. The trick is to have
enough information in the training data to find this out.

5. Naive Bayes is computationally very cheap.

6. Despite its serious theoretical limtations, Naive Bayes
can be extremely effective with the right feature set and
the right problem.

Appendix: Limitations

A couple of more advanced points:

1. The fact that improving likelihood in many cases does
not improve performance is one piece of evidence that
our objective function (what we are maximizing) should
include some kind of regularization. (roughly, smooth-
ing). Finding appropriate ways to do this is a major
topic in statistical analysis and machine learning.

For example, using LD for likelihood with respect to
the data, m for the size of the feature set, and α is a
penalty weighting between 0 and 1 controlling how
much regularization you do:

ŵ = argmin
w
−LD(w)+α

m

∑
j=1
|w j |2

This is a form of smoothing that discourages 0 proba-
bilities, because we penalize feature sets by the length
of the weight vector, discouraging high negative values
in the log sum, i.e., models that drive probabilities od
FEATURE to 0. In a Bayesian setting, this penalty can
be interpreted as a Gaussian prior over weight vectors,
though we will not pursue that here.

2. A look at the data also gives a sense of the limitation
of the method we are using. One of our top 100 IG
word features is feeling NN and, as suggested above,
its occurrence in the expression hard feelings makes
it a good indicator of sense HARD2. But our feature
extractor takes no note of where in the sentence a word
feature occurs; feeling is a fairly common noun and
there are numerous examples in our data in which it
occurs in a sentence, but not in the expression hard
feelings. For example:

we PRP find VBP it PRP hard JJ to TO du-
plicate VB the DT feeling NN of IN love NN
that WDT encompasses VBZ us PRP when WRB
the DT odor NN of IN french JJ fries NNS
floats VBZ through IN the DT air NN . .

This is sense HARD1 (“difficult”): Relying on the feel-
ing feature here would mislead us. The problem, of
course, is that our current feature extractor can’t rep-
resent the fact that we don’t have the expression hard
feelings in this example. Using multiword features or
building syntactic information into our features might
help.3

3 in this particular case, it might also help to distinguish singular and
plural, which our extractor does not do; but doing that across the board would
run the risk of impairing feature selection, because, for example, the 29
tokens of cover would be split, potentially reducing the information gain of
that feature.
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